Supplementary Material for
‘Shape of U: The Non-monotonic
Relationship Between Object-Location

Memory and Expectedness’
by Quent, Greve & Henson

S1. Objects Used

Kitchen Objects Non-Kitchen Objects

1 5 9 13 17

microwave | bowl of fruits bread towels hat

2 6 10 14 18
kitchen roll tea pot glass jug toy helmet

3 7 11 15 19
saucepan knife mug books calendar

4 8 12 16 20

toaster mixer dishes umbrella fan

Table $1: List of kitchen objects and non-kitchen objects used.



S2. Normative study

In order to select where to place each object and to get a range of expectancy values, a
group of six participants (five females and one male; Mean age 36.83 (SD = 2.14)) were shown
screenshots of each object at each location (i.e., 400 trials in total) and asked to rate how expected
that object was in that location, from -100 (unexpected) to +100 (expected). They were then
asked to also rate the general expectancy of each object anywhere in a kitchen (a further 20 trials).
Four additional objects (kitchen: peppers and white pot; non-kitchen: dumbbell and wrench)
were used to create eight object/location practice trials, which were shown first to give
participants an idea about the task and calibrate their ratings. Responses were given by moving

a slider across a scale. Results are shown in Figure S2.
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Figure S2: Mean normative rating of object-location for each object at each location:
Individual ratings could vary from -100 to 100. The column titled ‘overall’ (right) shows
average general expectancy rating for each object.



S3. Selecting object-locations based on normative study

$3.1. Pilot Experiment

The ratings were ranked from 1 to 400 within each participant (since different
participants used different ranges of values), and the ranks were then averaged over participants.
After that an algorithm was run with about 10 million iterations in which each object was
randomly assigned to the 20 locations along with two foil locations that were randomly chosen
(the foil locations were used in the 3AFC test of memory, and were chosen to have expectancies
close to that of the target location). When the solution was not valid (e.g., the same location was
selected for foil 1 and foil 2), this step was repeated until a valid solution was returned. For each
valid solution, the sum of squared differences between the ranks of the targets and the intended
uniform spread (“SS of targets”) and the sum of squared differences between the ranks of the
targets and both foils (“SS of foils”) were calculated. In a two-step process, the number of
solutions was first reduced to only include the 0.0001th percentile of the “SS of foils” distribution,
to prioritize adequate foils that are similar in their expectancy to the target. Second, the remaining
solutions were sorted by their “SS of targets” values and then checked for problems (e.g., an object
not being visible). The first valid set of 20 object-location pairs that was found by this algorithm

is shown in Table S3.

$3.2. Experiment 1

With regard to the environment, the only change from the Pilot Experiment was that
objects were now reshuffled to other locations, so that kitchen and non-kitchen objects were
more evenly distributed across (normative) expectancy ratings. To address the problem that
‘kitchen’ objects tended to be in extreme positions, only the “SS of targets” for kitchen objects was
used; otherwise the algorithm remained unchanged. This ensured that kitchen objects now also
occupied middle locations, while the spread of non-kitchen objects was still adequate. We will call

this Set 2, which is distinct from the Set 1 used in the Pilot Experiment.



$3.3. Experiment 2a and 2b

There were no differences in the selection process for Experiment 2 (compared to
Experiment 1) other than the fact that five sets were selected (i.e., 5 random winning iterations).
Here we call these Sets 3-7, though in the code accompanying this paper, they are numbered by

iteration in the simulation as 111, 246, 388, 498 and 848 respectively.

Object Locations

# Name Setl Set2 Set3 Set4 Set5 Set6  Set7
1  microwave 14 19 13 13 11 10 19
2 kitchen roll 8 17 11 16 4 19 2
3  saucepan 3 2 15 18 15 12 13
4  toaster 12 4 20 1 8 1 9
5 bowl of fruits 13 11 6 16 18 16 1
6 teapot 18 5 5 7 2 15 4
7  knife 20 13 10 14 6 13 14
8 mixer 9 18 12 3 14 14 17
9  bread 4 15 19 11 16 4 16
10 glassjug 15 7 8 4 7 8 6
11 mug 17 3 3 19 20 3 11
12 dishes 6 10 9 12 10 20 10
13 towels 7 14 17 10 5 18 5
14 toy 11 12 2 6 1 9 15
15 books 2 1 4 8 19 7 7




16

17

18

19

20

umbrella 1 8 18 17 12 5 8
hat 16 6 1 2 17 11 20
helmet 5 9 16 20 3 6 12
calendar 10 20 14 5 13 17 3
fan 19 16 7 9 9 2 18

Table S$3: This table lists the seven object-location sets which we used across the different
experiments. Each set contained 20 objects (left column) which were shown across 20 different
locations as indexed in the right columns which defined the different sets.



S4. Individual Expectancy Ratings

Spread in expectancy ratings for each participant
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Figure S$4: This figure illustrates the spread of all object-location expectancy ratings (x-axis)
collected from each participant (y-axis) tested across all four experiments (i.e. panel labelled
Pilot, 1, 2a and 2b). Numbers represent the objects (see Table S1) and are coloured orange if they
are generally expected in the kitchen and purple if they are not.



S5. Priors for analysis propagating priors as posteriors

For the analyses of the Pilot Experiment, we wanted each polynomial term to have a SD

of 0.5, to match the scale of the priors used. This was achieved by first dividing the raw expectancy

values (which ranged from -100 to 100) by 100, so that they ranged from -1 to 1, and then mean-

correcting them. These values, their squares and their cubes were then scaled separately to have

zero mean and SD of 0.5. These scaling factors were stored and applied to the corresponding

polynomial terms of Experiments 1-2, so that the posteriors from each experiment were scaled

appropriately to function as priors for subsequent experiments (i.e., to ensure the scaling was

identical across experiments). These priors are shown below.

Pilot Exp. 1 Exp. 2a Exp. 2b
Measure Predictor df 1 o df 1 c df v c df n o
Intercept 7 0 10 1441 | -047 | 0.35 27.67 -056 | 0.27 73.74 -0.2 0.19
Recall Linear 7 0 1 72.36 | 0.05 0.39 123.47 | 0.39 0.25 12199 | 0.8 0.17
Quadratic 7 0 1 75.24 | 1.05 0.35 113.52 | 0.71 0.22 139.21 | 0.5 0.16
Intercept 7 0 10 14.22 | 1.08 0.33 39.73 1.09 0.23 53.93 1.21 0.17
3AFC Linear 7 0 1 80.92 | 0.28 0.4 91.81 0.75 0.25 12949 | 0.6 0.18
Quadratic 7 0 1 97.21 | 0.38 0.32 116.5 0.54 0.2 104.89 | 0.49 0.16
Recollection Intercept 7 0 10 17.11 -0.09 | 0.26 39.58 0.01 0.17
(independence/ Linear 7 0 1 104.61 | 0.29 0.26 107.12 | 0.02 0.17
redundancy) Quadratic 7 0 1 83.67 0.71 0.24 84.47 0.63 0.16
Intercept 7 0 10 17.48 0.75 0.33 35.84 0.86 0.21
Recollection
Linear 7 0 1 82.28 0.32 0.33 101.41 | 0.02 0.22
(exclusivity)
Quadratic 7 0 1 78.38 0.72 0.31 118.84 | 1.67 0.21
Intercept 7 0 10 14.96 00.02 | 0.19 26.98 0.02 0.14
Familiarity (independence,
Linear 7 0 1 74.79 0.09 0.29 96.65 -0.04 | 0.21
exclusivity)
Quadratic 7 0 1 69.62 0.06 0.28 102.72 | 0.05 0.2
Familiarity Intercept 7 0 10 18.26 1.22 0.23 35.52 1.28 0.16




(redundancy)

Linear

7 0

1

92.83

0.18

0.28

98.59

-0.05

0.19

Quadratic

7 0

1

83.05

0.5

0.25

75.85

0.46

0.18

Table S5: List of priors for models reported in the main text.

S6. R/F/G/N-task

§6.1 instructions given to participants

As explained in the main text, we also asked participants to describe their subjective
experience of memory with an R/F/G/N instructions. The following instruction was given to

participants verbally:

“After you have placed the object, I will ask you how you made that decision. If you don’t
remember seeing the object at all, tell me “no memory”. If you remember the object, but have no idea
where it was, you still have to place the object where you think it was, so what you have to do is
guess, which is what you then say. If you didn’t initially remember where it was, but once you had
placed somewhere, that location looked familiar, say “familiar”. So it is a vague feeling of familiarity
but you don't have any specific source to base your decision on. Finally, if you remembered where
the object was immediately that you saw it, then say “remember”. For instance that could be because
you remember what you thought when you saw the object, you remember hearing something while
you saw the object (e.g., the instructor talked to you) or you remembered the order in which you saw

the objects etc.”

S$6.2 R/F/G/N distribution across experiments

Experiment R/F/G/N # of responses | Percent %
remember 220 44
1 familiar 114 23
guess 113 23
no memory 53 11
remember 230 48
2a familiar 110 23
guess 108 22




no memory 32 7
remember 677 47
2b familiar 347 24
guess 278 19
no memory 138 10

Table 56.2: Distribution of R/F/G/N-responses in 3AFC tasks across the experiments.

S7. Supplementary analyses

All frequentist models (if not specified differently) were run using the R package ImerTest
(Kuznetsova et al., 2017) and included random intercepts for objects and participants. The
binomial family function was used to predict binary outcomes, while the gamma family function
was used for Euclidean distance (placement error). To make the parameter estimates

comparable, the same scaling was used as for the analyses reported in the main text.

S7.1. Pilot Experiment

We also performed a frequentist analysis with the probability of giving a high confidence
response in the 3AFC task (analogous to the analysis of recollection in Experiments 1, 2a and 2b).
This showed a significant quadratic relationship between object-location expectancy and high

confidence responses (Table S7.1).

B SE Z P Sig
Intercept -0.55 0.28 -1.98 0.048 *
Linear 0.02 0.36 0.07 0.9449
Quadratic 1.58 0.8 1.98 0.0472 *

Table $7.1: Results of frequentist model predicting high confidence 3AFC responses in
Experiment 1.
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S§7.2. Experiment 1

Like in the Pilot Experiment, the average expectancy for incorrectly-placed objects was
+34.49 (16.59) and so clearly higher than for correctly-placed objects, which was -4.54 (14.58),

BF10=1.74x105d = 1.51.

Remember/familiar judgements were initially analysed in line with pre-registered
analysis of the mean expectancy rating for remember and familiar judgments
(https://osf.io/kcr2q), but further simulations showed that this trial-averaged analysis is biased

by boundary effects on expectancy values (see https://jaquent.github.io/post/a-u-shape-that-

appears-as-a-linear-correlation-when-averaged/). So instead, we fitted a model to individual

trials, where the binary outcome was whether a response was given a remember or familiar
judgment, and the trials that were included depended on one of three possible relationships
between the theoretical concepts of recollection/familiarity and the response labels of

“remember” and “familiar” (i.e., independent, redundant and exclusive; see main paper).

For the recollection estimate under exclusivity (333 trials), there was no linear effect, BF1o
=0.495,3=0.318 (95 % CI [-0.323, 0.986]), and anecdotal evidence for a quadratic effect, BFio =
4.98, 3=0.724 (95 % CI [0.124, 1.34]). For familiarity scored under the redundancy assumption
(447 trials), there was anecdotal evidence against a linear effect, BF1o = 0. 327, § = 0.178 (95 %
CI [-0.365, 0.737]), but inconclusive evidence for a quadratic effect, BFio = 1.61, B = 0.495 (95 %

CI [-0.00322, 1.01]).

§7.3. Experiment 2a

Similar to previous experiments, the average expectancy for incorrectly-placed objects M
=+37.39 (SD = 15.69) was clearly higher than for correctly-placed objects, M =+1.08 (SD = 14.18),

BF10=6.63x105d=1.7.


https://jaquent.github.io/post/a-u-shape-that-appears-as-a-linear-correlation-when-averaged/
https://jaquent.github.io/post/a-u-shape-that-appears-as-a-linear-correlation-when-averaged/
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For recollection estimated under exclusivity (338 trials), we found no linear effect, BFio =
0.346,PB19=0.206, 3 =0.0175 (95 % CI [-0.419, 0.451]), and very strong evidence for a quadratic
effect, BF10=2.85, PB10=36.7, B = 0.667 (95 % CI [0.255, 1.08]). For familiarity scored under the
redundancy assumption (448 trials), there was no linear effect, BFio = 0.372, PB1o = 0.189, 3 = -
0.0524 (95 % CI [-0.432, 0.326]), but moderate evidence for quadratic effect, BF1o = 0.979, PB1o =
4.6, B = 0461 (95 % CI [0.111, 0.813]), which can be traced back to the contribution of

recollection.

S7.4. Experiment 2b

Again mirroring the results from the previous experiments, the average expectancy for
incorrectly-placed objects, M = +23.44 (SD = 22.33), was clearly higher than for correctly-placed

objects, M =-9.06 (SD = 25.32), BF10 = 1.46 x 1010, d = 1.09.

For recollection estimate under exclusivity (955 trials), we found a strong linear effect,
BF10 = 109, PB1o = 4.72, § = -0.387 (95 % CI [-0.677, -0.101]), and moderate evidence for a
quadratic effect, BF10=0.626, PB1o=41.8, 8 =0.467 (95 % CI [0.19, 0.744]). For familiarity scored
under the redundancy assumption (1302 trials), there was inconclusive evidence regarding a
linear effect, BFio = 3.26, PB1op = 0.957, § = -0.255 (95 % CI [-0.502, -0.0107]), but moderate

evidence for quadratic effect, BF1o=0.438, PB1o = 6.08, § = 0.335 (95 % CI [0.0983, 0.569]).

S$7.5. Modelling guess responses

Following the suggestion of one of the reviewers, we also modelled “guess” responses.
Ideally we would analyse guesses in the same way as we analysed remember and familiar
responses, i.e., by estimating their probability conditional on responses of the other category (i.e.,
under independence or exclusive scoring). However, if we excluded trials with remember or
familiar responses, the majority of the remaining trials were guesses (i.e., there were very few

“no memory” trials), meaning that estimated conditional probabilities were too close to ceiling to
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analyse. Instead, we estimated the unconditional probability (i.e., guesses as a proportion of all
trials). This showed an inverted U-shape, with most guesses for middling expectancies (see Figure
below). Indeed, there was little evidence that guesses increased linearly with expectancy (2420
trials), BF10 = 0.69, B = 0.224 (95 % CI [-0.008, 0.455]), but there was moderate evidence for a
negative quadratic relationship, BF1o = 6.36, 3 = -0.324 (95 % CI [-0.551, -0.101]). However, this
is difficult to interpret because it could simply reflect the dependency of these probabilities on
remember responses, which we know from the main analyses showed the opposite, U-shaped
function (i.e., more remember responses for the two extremes necessarily means fewer guesses

can occur there).

Guess

1.00 = @I D I QEED (DI @ G IEe
0.75 =

0.50 =

p(guess)

0.25 =

L O TE ) S @ T o S T
1 1 1 1 1
-1.0 -0.5 0.0 0.5 1.0

Unxpected Expected

Figure S7.4: The blue line represents the predicted 2nd-order polynomial relationship for the
guess model, using evidence propagated across experiments; the shaded area round the blue line
represents the 95% credible intervals of the prediction.

§7.6. Continuous (Euclidean) distance error

Given that the definition of the “correct” location during recall was sometimes ambiguous,
and to provide a more continuous measure of accuracy (that does not require logistic regression),
we also analysed the Euclidean error between the recalled and correct location. According to the

original hypothesis, this error should be an inverted-U shape, i.e., with less error towards the two
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extremes. The results are included in the pooled analyses across experiments shown in Table S7.7

below.

§7.7. Pooled frequentist analysis

To compare with the propagated Bayesian analysis, we performed a final frequentist
analysis after pooling data across all four experiments, for recall accuracy, Euclidean error and

recognition accuracy (Table S7.7).

Measure B SE vA p sign
Recall Intercept | -0.67 0.16 -4.15 <.0001 ook

Linear 0.07 0.1 0.67 .5004

Quadratic | 1.01 0.26 3.93 .0001 ok
Euclidean Intercept | 0.7 0.04 17.61 <.0001 ok
distance

Linear 0.12 0.03 4.21 <.0001 ok
(placement
error) Quadratic | 79 0.07 4.24 <.0001 o
3AFC Intercept | 1.01 0.15 6.51 <.0001 ok

Linear 0.18 0.11 1.66 .0977

Quadratic | 0.85 0.27 3.14 .0017 ok
Remember Intercept | -0.2 0.16 -1.25 .2105

Linear -0.33 0.1 -3.29 .001 *

Quadratic | 1.01 0.25 3.96 .0001 ook
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Remember Intercept | 0.61 0.2 3.12 .0018 ok
(exclusivity)

Linear -0.32 0.13 -2.4 .0164 *

Quadratic | 1.29 0.33 3.86 .0001 ok
Familiarity Intercept | -0.57 0.12 -4.91 <.0001 ok
(independence) | Linear -0.17 0.13 -1.35 1767

Quadratic | 0.61 0.31 1.97 .0488 *
Familiarity Intercept | 1.16 0.15 7.9 <.0001 ok
(redundancy)

Linear -0.22 0.12 -1.8 .0713

Quadratic | 0.89 0.29 3.03 .0025 x

Table S7.7: Frequentist analysis pooled across all experiments. * p <.05, ** p <.001, ***p <

.0001

$7.8. Pooled Bayesian analysis, including additional cubic expansion

To check that the propagation of Bayesian evidence was itself accurate, despite ignoring
any posterior dependencies between parameter values, we checked that the BF from the pooled
data was similar to the final PB after Experiment 2b. In addition, we added a cubic expansion to

ask whether the relationship was S-shaped rather than U-shaped.

For recall, the pooled estimate of the linear effect, 3 =-0.269 (95 % CI [-0.795, 0.253]) had
a BF1o = 0.428, which is comparable to PB1o = 0.105 reported for Experiment 2b above; while the
pooled estimate of the quadratic effect, § = 0.408 (95 % CI [0.205, 0.612]), had a BF10=471, again
is comparable to the above PB1o = 387. Importantly, there was no evidence in favour of a cubic

effect, B = 0.347 (95 % CI [-0.17, 0.87]), BF10= 0.586.
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For 3AFC, the pooled estimate of the linear effect, 8 = -0.0495 (95 % CI [-0.606, 0.503]),
had a BFio = 0.276, comparable to the above PBio = 0.41, while the pooled estimate of the
quadratic effect, f = 0.342 (95 % CI [0.131, 0.556]), had a BF1o = 30, comparable to the above PB1o
= 13.2. Again there was no evidence in favour of a cubic effect, 3 = 0.238 (95 % CI [-0.314, 0.792]),

BF10=0.388.

Finally, for recollection, the pooled estimate of the linear effect,  =-0.923 (95 % CI [-1.46,
-0.393]), had a BFqo = 81, comparable to the above PB1o = 27, while the pooled estimate of the
quadratic effect, B = 0.414 (95 % CI [0.214, 0.615]), had a BF1o = 305, comparable to the above
PB1o=135. In contrast to 3AFC and recall, there was moderate evidence in favour of a cubic effect,
B=0.634 (95 % CI [0.108, 1.17]), BF10 = 4.22; however this was much smaller than the extreme

evidence for a quadratic effect.

Overall, while there were small differences due to numerical sampling and due to ignoring
the covariance between parameters (see main text), pooling the Bayes Factors across

experiments (PB) gave similar results to calculating the Bayes Factors on pooled data.
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$8. Interrupted regressions

The idea behind interrupted regression is that evidence for a quadratic component alone does not imply a U-shape. To circumvent this, two
lines are fit to the data that intersect at a certain point, and a U-shape is inferred if both slopes are different enough from zero and have opposite signs.
As pre-registered (see https://osf.io/b9dqg), we tested this by combining data across all experiments. To determine the “breaking-point” (bp) where

the two lines intersect, we fit the model:
y ~ xlow + xhigh + high + set + (1 | participant number) + (1 | object number)
where, if x = object-location expectancy, then:
xlow =x - bp if x <= bp and 0 otherwise,
xhigh = x - bp if x > bp and 0 otherwise, and
high = 1 if x > bp and 0 otherwise (to capture any difference in intercept of the two lines)

We then tested whether the 95% Cls for both the “leftward” (xlow) slope and “rightward” (xhigh) slopes included zero. To optimise “bp”, we
tested 10 equally-spaced breaking points within the middle 80% range of the expectancy ratings. Simulations showed that the false positive rate

remained under 5% for testing these 10 breaking points when accepting a BF1o > 6 as evidence (see https://jaquent.github.io/post/finding-a-u-shape-



https://jaquent.github.io/post/finding-a-u-shape-with-bayesian-interrupted-regression/
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with-bayesian-interrupted-regression/). Results are shown in Tables S8.1-S9.3. below. Note that the breaking point position refers to the scaled

expectancy values (i.e., after scaling to have a SD of 0.5 for the Bayesian statistics).

$8.1. Recall
e Bl;c?iknitn ; B: 25%  975%  BFi B0 25%  975%  BF; Bl
point # st (1-tailed) (1-tailed)
0734  -00117 -236 229 0994 0985 0066 -0.154 0291 0132  0.188
! 8
2 0576 0268 -163 23 0931 0736 0263 -0.0122 0536 0796 154
3 0417  -00109 -13 128 0628 0639 0521 0187 0856  17.1 34.2
4 0258  -0849 -18 00812 241 464 0529 0147 0917 7.6 141
5 00995  -0.613 -1.23 0.00584  2.08 405 0725 023 122 136 27.1
6 00592  -0778 -13  -0284 275 549 0687 00642 134 3.8 6.27
7 0.218 0383 -0776 00137  1.16 2.25 135 0462 227 359 71.7
8 0.377 035 -0.667 -0.0316 171 3.37 178 0364 327 162 32.2
9 0.535 0307 -0581 -0.0372  1.67 3.3 115  -0.724 345 165 2.89



https://jaquent.github.io/post/finding-a-u-shape-with-bayesian-interrupted-regression/

1.05

18

10 0.694 -0.189  -0.413 0.0344 0.443 0.845 0.015 -2.31 2.35 1.05
3
Table $8.1: A U-shape was found for breaking point 6 for recall as the CI and the BFs indicated that both slopes have opposite signs and are different
from zero.
$8.2. 3AFC
. Breaking BF BF

Bgf;f;fg point B 25% 975% BFi N B.  25% 97.5% BFy v

p position (1-tailed) (1-tailed)

1 -0.734 0.0077 -2.31 2.3 1.05 1.04 0.272 0.0303 0.514 1.42 2.81

2 -0.575 -0.629  -2.92 1.34 1.05 1.52 0397 0.117 0.678 5.88 11.7

3 -0.417 -0.537 -191 0.803 0.863 1.34 0.549 0.212 0.893 29.2 58.4

4 -0.258 -0.835 -1.77 0.116 2.06 3.93 0.505 0.105 0918 4.28 8.48

5 -0.0995 -0.513 -1.16 0.137 1.08 2.02 0.554 0.0277 1.08 2.38 4.66

6 0.059 -0.313  -0.82 0.21 0.491 0.868 0.752 0.111 1.42 4.36 8.63

7 0.218 -0.006  -0.42 0.406 0.202 0.206 1.64 0.686 2.61 117 233

8 0.376 -0.126  -0.46 0.211 0.217 0.334 2.24 0.706 3.95 44.3 88.4




9

10

0.535

0.693

-0.191

-0.0904

-0.47 0.0887 0.307

-0.33

0.144

0.156

0.556

0.243

1.1

0.0618

-0.777

-2.28

3.57

2.5

1.5

0.991

19

2.57

1.04

Table $8.2: No U-shape was detected for 3AFC as the CI and the BFs (order restricted) indicated that there is enough evidence that both slopes have

opposite signs and are different from zero.

$8.3. Recollection

aeE Br;oaiknitn ® 5 5% 975% BR B0 8, 25%  97.5%  BFio BFo
point # position (1-tailed) (1-tailed)
1 0732 00129 -23  2.38 1 0994  -0345  -0.545 -0147 204  0.0136
2 0573 00084 -18 188 0871 0859  -0152  -0419 0115 0237  0.0643
3 0415  -0.088 -141 119 0643 071 00757 -0232 039 0172 0236
4 0257  -0771 -17 0168 175 333 0127  -0.242 049 0229  0.347
5 00989  -0.725 -135 -0108 425 8.4 0481 00024 0949 167 3.26
6 00593  -0.854 -136 -0.348 46 92 0843 0213 148 122 244
7 0217  -0841 -123 -0454 310 620 122 037 21 203 40.4
8 0376  -0816 -115 -0495 4340 8690 167 0325 315 129 25.6
9 0534  -0722 -099 -0451 3570 7140 198  -0132 477 439 8.45
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10 0.692 -0.616 -0.84 -0.389 3410 6810 0.137 -2.22 2.6 0.972 1.07

Table $8.3: A U-shape was found for breaking points 5 - 9 in recollection as the CI and the BFs indicated that both slopes have opposite signs and are
different from zero.
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