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Supplementary Material for  

‘Shape of U: The Non-monotonic 
Relationship Between Object-Location 

Memory and Expectedness’  
by Quent, Greve & Henson 

 

S1. Objects Used 

 

Kitchen Objects 

  

Non-Kitchen Objects 

1 

microwave 

5 

bowl of fruits 

9 

bread 

13 

towels 

17 

hat 

2 

kitchen roll 

6 

tea pot 

10 

glass jug 

14 

toy 

18 

helmet 

3 

saucepan 

7 

knife 

11 

mug 

15 

books 

19 

calendar 

4 

toaster 

8 

mixer 

12 

dishes 

16  

umbrella 

20 

fan 

 

Table S1: List of kitchen objects and non-kitchen objects used.  
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S2. Normative study  

In order to select where to place each object and to get a range of expectancy values, a 

group of six participants (five females and one male; Mean age 36.83 (SD = 2.14)) were shown 

screenshots of each object at each location (i.e., 400 trials in total) and asked to rate how expected 

that object was in that location, from -100 (unexpected) to +100 (expected). They were then 

asked to also rate the general expectancy of each object anywhere in a kitchen (a further 20 trials). 

Four additional objects (kitchen: peppers and white pot; non-kitchen: dumbbell and wrench) 

were used to create eight object/location practice trials, which were shown first to give 

participants an idea about the task and calibrate their ratings. Responses were given by moving 

a slider across a scale. Results are shown in Figure S2.  

 

Figure S2: Mean normative rating of object-location for each object at each location: 
Individual ratings could vary from -100 to 100. The column titled ‘overall’ (right) shows 
average general expectancy rating for each object.  
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S3. Selecting object-locations based on normative study 

S3.1. Pilot Experiment 

The ratings were ranked from 1 to 400 within each participant (since different 

participants used different ranges of values), and the ranks were then averaged over participants. 

After that an algorithm was run with about 10 million iterations in which each object was 

randomly assigned to the 20 locations along with two foil locations that were randomly chosen 

(the foil locations were used in the 3AFC test of memory, and were chosen to have expectancies 

close to that of the target location). When the solution was not valid (e.g., the same location was 

selected for foil 1 and foil 2), this step was repeated until a valid solution was returned. For each 

valid solution, the sum of squared differences between the ranks of the targets and the intended 

uniform spread (“SS of targets”) and the sum of squared differences between the ranks of the 

targets and both foils (“SS of foils”) were calculated. In a two-step process, the number of 

solutions was first reduced to only include the 0.0001th percentile of the “SS of foils” distribution, 

to prioritize adequate foils that are similar in their expectancy to the target. Second, the remaining 

solutions were sorted by their “SS of targets” values and then checked for problems (e.g., an object 

not being visible). The first valid set of 20 object-location pairs that was found by this algorithm 

is shown in Table S3. 

S3.2. Experiment 1 

With regard to the environment, the only change from the Pilot Experiment was that 

objects were now reshuffled to other locations, so that kitchen and non-kitchen objects were 

more evenly distributed across (normative) expectancy ratings. To address the problem that 

‘kitchen’ objects tended to be in extreme positions, only the “SS of targets” for kitchen objects was 

used; otherwise the algorithm remained unchanged. This ensured that kitchen objects now also 

occupied middle locations, while the spread of non-kitchen objects was still adequate. We will call 

this Set 2, which is distinct from the Set 1 used in the Pilot Experiment. 
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S3.3. Experiment 2a and 2b 

There were no differences in the selection process for Experiment 2 (compared to 

Experiment 1) other than the fact that five sets were selected (i.e., 5 random winning iterations). 

Here we call these Sets 3-7, though in the code accompanying this paper, they are numbered by 

iteration in the simulation as 111, 246, 388, 498 and 848 respectively. 

Object Locations 

# Name Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 

1 microwave 14 19 13 13 11 10 19 

2 kitchen roll 8 17 11 16 4 19 2 

3 saucepan 3 2 15 18 15 12 13 

4 toaster 12 4 20 1 8 1 9 

5 bowl of fruits 13 11 6 16 18 16 1 

6 tea pot 18 5 5 7 2 15 4 

7 knife 20 13 10 14 6 13 14 

8 mixer 9 18 12 3 14 14 17 

9 bread 4 15 19 11 16 4 16 

10 glass jug 15 7 8 4 7 8 6 

11 mug 17 3 3 19 20 3 11 

12 dishes 6 10 9 12 10 20 10 

13 towels 7 14 17 10 5 18 5 

14 toy 11 12 2 6 1 9 15 

15 books 2 1 4 8 19 7 7 
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Table S3: This table lists the seven object-location sets which we used across the different 
experiments. Each set contained 20 objects (left column) which were shown across 20 different 
locations as indexed in the right columns which defined the different sets.  

16 umbrella 1 8 18 17 12 5 8 

17 hat 16 6 1 2 17 11 20 

18 helmet 5 9 16 20 3 6 12 

19 calendar 10 20 14 5 13 17 3 

20 fan 19 16 7 9 9 2 18 
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S4. Individual Expectancy Ratings 

 

Figure S4: This figure illustrates the spread of all object-location expectancy ratings (x-axis) 
collected from each participant (y-axis) tested across all four experiments (i.e. panel labelled 
Pilot, 1, 2a and 2b). Numbers represent the objects (see Table S1) and are coloured orange if they 
are generally expected in the kitchen and purple if they are not.  
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S5. Priors for analysis propagating priors as posteriors 

For the analyses of the Pilot Experiment, we wanted each polynomial term to have a SD 

of 0.5, to match the scale of the priors used. This was achieved by first dividing the raw expectancy 

values (which ranged from -100 to 100) by 100, so that they ranged from -1 to 1, and then mean-

correcting them. These values, their squares and their cubes were then scaled separately to have 

zero mean and SD of 0.5. These scaling factors were stored and applied to the corresponding 

polynomial terms of Experiments 1-2, so that the posteriors from each experiment were scaled 

appropriately to function as priors for subsequent experiments (i.e., to ensure the scaling was 

identical across experiments). These priors are shown below. 

 Pilot 

 

Exp. 1 

 

Exp. 2a 

 

Exp. 2b 

Measure Predictor df µ σ df µ σ df µ σ df µ σ 

Recall 

Intercept 7 0 10 14.41 -0.47 0.35 27.67 -056 0.27 73.74 -0.2 0.19 

Linear 7 0 1 72.36 0.05 0.39 123.47 0.39 0.25 121.99 0.8 0.17 

Quadratic 7 0 1 75.24 1.05 0.35 113.52 0.71 0.22 139.21 0.5 0.16 

3AFC 

Intercept 7 0 10 14.22 1.08 0.33 39.73 1.09 0.23 53.93 1.21 0.17 

Linear 7 0 1 80.92 0.28 0.4 91.81 0.75 0.25 129.49 0.6 0.18 

Quadratic 7 0 1 97.21 0.38 0.32 116.5 0.54 0.2 104.89 0.49 0.16 

Recollection  

(independence/ 

redundancy) 

Intercept 7 0 10 17.11 -0.09 0.26 39.58 0.01 0.17 

Linear 7 0 1 104.61 0.29 0.26 107.12 0.02 0.17 

Quadratic 7 0 1 83.67 0.71 0.24 84.47 0.63 0.16 

Recollection  

(exclusivity) 

Intercept 7 0 10 17.48 0.75 0.33 35.84 0.86 0.21 

Linear 7 0 1 82.28 0.32 0.33 101.41 0.02 0.22 

Quadratic 7 0 1 78.38 0.72 0.31 118.84 1.67 0.21 

Familiarity (independence, 

exclusivity) 

Intercept 7 0 10 14.96 00.02 0.19 26.98 0.02 0.14 

Linear 7 0 1 74.79 0.09 0.29 96.65 -0.04 0.21 

Quadratic 7 0 1 69.62 0.06 0.28 102.72 0.05 0.2 

Familiarity  Intercept 7 0 10 18.26 1.22 0.23 35.52 1.28 0.16 
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Table S5: List of priors for models reported in the main text. 

S6. R/F/G/N-task 

S6.1 instructions given to participants 

As explained in the main text, we also asked participants to describe their subjective 

experience of memory with an R/F/G/N instructions. The following instruction was given to 

participants verbally:  

“After you have placed the object, I will ask you how you made that decision. If you don’t 

remember seeing the object at all, tell me “no memory”. If you remember the object, but have no idea 

where it was, you still have to place the object where you think it was, so what you have to do is 

guess, which is what you then say. If you didn’t initially remember where it was, but once you had 

placed somewhere, that location looked familiar, say “familiar”. So it is a vague feeling of familiarity 

but you don't have any specific source to base your decision on. Finally, if you remembered where 

the object was immediately that you saw it, then say “remember”. For instance that could be because 

you remember what you thought when you saw the object, you remember hearing something while 

you saw the object (e.g., the instructor talked to you) or you remembered the order in which you saw 

the objects etc.” 

S6.2 R/F/G/N distribution across experiments 

Experiment R/F/G/N # of responses Percent % 

1 

remember 220 44 

familiar 114 23 

guess 113 23 

no memory 53 11 

2a 

remember 230 48 

familiar 110 23 

guess 108 22 

(redundancy) Linear 7 0 1 92.83 0.18 0.28 98.59 -0.05 0.19 

Quadratic 7 0 1 83.05 0.5 0.25 75.85 0.46 0.18 



9 
 
 

no memory 32 7 

2b 

remember 677 47 

familiar 347 24 

guess 278 19 

no memory 138 10 

Table S6.2: Distribution of R/F/G/N-responses in 3AFC tasks across the experiments. 

S7. Supplementary analyses 

All frequentist models (if not specified differently) were run using the R package lmerTest 

(Kuznetsova et al., 2017) and included random intercepts for objects and participants. The 

binomial family function was used to predict binary outcomes, while the gamma family function 

was used for Euclidean distance (placement error). To make the parameter estimates 

comparable, the same scaling was used as for the analyses reported in the main text. 

S7.1. Pilot Experiment 

We also performed a frequentist analysis with the probability of giving a high confidence 

response in the 3AFC task (analogous to the analysis of recollection in Experiments 1, 2a and 2b). 

This showed a significant quadratic relationship between object-location expectancy and high 

confidence responses (Table S7.1). 

 β SE Z P Sig 

Intercept -0.55 0.28 -1.98 0.048 * 

Linear 0.02 0.36 0.07 0.9449  

Quadratic 1.58 0.8 1.98 0.0472 * 

Table S7.1: Results of frequentist model predicting high confidence 3AFC responses in 
Experiment 1. 
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S7.2. Experiment 1 

Like in the Pilot Experiment, the average expectancy for incorrectly-placed objects was 

+34.49 (16.59) and so clearly higher than for correctly-placed objects, which was -4.54 (14.58), 

BF10 = 1.74 x 105, d = 1.51. 

Remember/familiar judgements were initially analysed in line with pre-registered 

analysis of the mean expectancy rating for remember and familiar judgments 

(https://osf.io/kcr2q), but further simulations showed that this trial-averaged analysis is biased 

by boundary effects on expectancy values (see https://jaquent.github.io/post/a-u-shape-that-

appears-as-a-linear-correlation-when-averaged/). So instead, we fitted a model to individual 

trials, where the binary outcome was whether a response was given a remember or familiar 

judgment, and the trials that were included depended on one of three possible relationships 

between the theoretical concepts of recollection/familiarity and the response labels of 

“remember” and “familiar” (i.e., independent, redundant and exclusive; see main paper). 

For the recollection estimate under exclusivity (333 trials), there was no linear effect, BF10 

= 0.495, β = 0.318 (95 % CI [-0.323, 0.986]), and anecdotal evidence for a quadratic effect, BF10 = 

4.98, β = 0.724 (95 % CI [0.124, 1.34]). For familiarity scored under the redundancy assumption 

(447 trials), there was anecdotal evidence against a linear effect, BF10 = 0. 327, β = 0.178 (95 % 

CI [-0.365, 0.737]), but inconclusive evidence for a quadratic effect, BF10 = 1.61, β = 0.495 (95 % 

CI [-0.00322, 1.01]).  

S7.3. Experiment 2a 

Similar to previous experiments, the average expectancy for incorrectly-placed objects M 

= +37.39 (SD = 15.69) was clearly higher than for correctly-placed objects, M = +1.08 (SD = 14.18), 

BF10 = 6.63 x 105, d = 1.7.  

https://jaquent.github.io/post/a-u-shape-that-appears-as-a-linear-correlation-when-averaged/
https://jaquent.github.io/post/a-u-shape-that-appears-as-a-linear-correlation-when-averaged/
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For recollection estimated under exclusivity (338 trials), we found no linear effect, BF10 = 

0.346, PB10 = 0.206, β = 0.0175 (95 % CI [-0.419, 0.451]), and very strong evidence for a quadratic 

effect, BF10 = 2.85, PB10 = 36.7, β = 0.667 (95 % CI [0.255, 1.08]). For familiarity scored under the 

redundancy assumption (448 trials), there was no linear effect, BF10 = 0.372, PB10 = 0.189, β = -

0.0524 (95 % CI [-0.432, 0.326]), but moderate evidence for quadratic effect, BF10 = 0.979, PB10 = 

4.6, β = 0.461 (95 % CI [0.111, 0.813]), which can be traced back to the contribution of 

recollection.  

S7.4. Experiment 2b 

Again mirroring the results from the previous experiments, the average expectancy for 

incorrectly-placed objects, M = +23.44 (SD = 22.33), was clearly higher than for correctly-placed 

objects, M = -9.06 (SD = 25.32), BF10 = 1.46 x 1010, d = 1.09. 

For recollection estimate under exclusivity (955 trials), we found a strong linear effect, 

BF10 = 109, PB10 = 4.72, 𝛽 = -0.387 (95 % CI [-0.677, -0.101]), and moderate evidence for a 

quadratic effect, BF10 = 0.626, PB10 = 41.8, 𝛽 = 0.467 (95 % CI [0.19, 0.744]). For familiarity scored 

under the redundancy assumption (1302 trials), there was inconclusive evidence regarding a 

linear effect, BF10 = 3.26, PB10 = 0.957, 𝛽 = -0.255 (95 % CI [-0.502, -0.0107]), but moderate 

evidence for quadratic effect, BF10 = 0.438, PB10 = 6.08, 𝛽 = 0.335 (95 % CI [0.0983, 0.569]). 

S7.5. Modelling guess responses 

Following the suggestion of one of the reviewers, we also modelled “guess” responses. 

Ideally we would analyse guesses in the same way as we analysed remember and familiar 

responses, i.e., by estimating their probability conditional on responses of the other category (i.e., 

under independence or exclusive scoring). However, if we excluded trials with remember or 

familiar responses, the majority of the remaining trials were guesses (i.e., there were very few 

“no memory” trials), meaning that estimated conditional probabilities were too close to ceiling to 
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analyse. Instead, we estimated the unconditional probability (i.e., guesses as a proportion of all 

trials). This showed an inverted U-shape, with most guesses for middling expectancies (see Figure 

below). Indeed, there was little evidence that guesses increased linearly with expectancy (2420 

trials), BF10 = 0.69, β = 0.224 (95 % CI [-0.008, 0.455]), but there was moderate evidence for a 

negative quadratic relationship, BF10 = 6.36, β = -0.324 (95 % CI [-0.551, -0.101]). However, this 

is difficult to interpret because it could simply reflect the dependency of these probabilities on 

remember responses, which we know from the main analyses showed the opposite, U-shaped 

function (i.e., more remember responses for the two extremes necessarily means fewer guesses 

can occur there). 

 

Figure S7.4: The blue line represents the predicted 2nd-order polynomial relationship for the 
guess model, using evidence propagated across experiments; the shaded area round the blue line 
represents the 95% credible intervals of the prediction. 

 

S7.6. Continuous (Euclidean) distance error 

Given that the definition of the “correct” location during recall was sometimes ambiguous, 

and to provide a more continuous measure of accuracy (that does not require logistic regression), 

we also analysed the Euclidean error between the recalled and correct location. According to the 

original hypothesis, this error should be an inverted-U shape, i.e., with less error towards the two 
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extremes. The results are included in the pooled analyses across experiments shown in Table S7.7 

below. 

S7.7. Pooled frequentist analysis 

To compare with the propagated Bayesian analysis, we performed a final frequentist 

analysis after pooling data across all four experiments, for recall accuracy, Euclidean error and 

recognition accuracy (Table S7.7).  

Measure  β SE z p sign 

Recall Intercept -0.67 0.16 -4.15 < .0001 *** 

Linear 0.07 0.1 0.67 .5004  

Quadratic 1.01 0.26 3.93 .0001 *** 

Euclidean 

distance 

(placement 

error) 

Intercept 0.7 0.04 17.61 < .0001 *** 

Linear 0.12 0.03 4.21 < .0001 *** 

Quadratic 0.28 0.07 4.24 < .0001 *** 

3AFC Intercept 1.01 0.15 6.51 < .0001 *** 

Linear 0.18 0.11 1.66 .0977  

Quadratic 0.85 0.27 3.14 .0017 ** 

Remember Intercept -0.2 0.16 -1.25 .2105  

Linear -0.33 0.1 -3.29 .001 * 

Quadratic 1.01 0.25 3.96 .0001 *** 
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Remember 

(exclusivity) 

Intercept 0.61 0.2 3.12 .0018 ** 

Linear -0.32 0.13 -2.4 .0164 * 

Quadratic 1.29 0.33 3.86 .0001 *** 

Familiarity 

(independence) 

Intercept -0.57 0.12 -4.91 < .0001 *** 

Linear -0.17 0.13 -1.35 .1767  

Quadratic 0.61 0.31 1.97 .0488 * 

Familiarity 

(redundancy) 

Intercept 1.16 0.15 7.9 < .0001 *** 

Linear -0.22 0.12 -1.8 .0713  

Quadratic 0.89 0.29 3.03 .0025 ** 

Table S7.7: Frequentist analysis pooled across all experiments. * p < .05, ** p < .001, *** p < 

.0001 

S7.8. Pooled Bayesian analysis, including additional cubic expansion 

 To check that the propagation of Bayesian evidence was itself accurate, despite ignoring 

any posterior dependencies between parameter values, we checked that the BF from the pooled 

data was similar to the final PB after Experiment 2b. In addition, we added a cubic expansion to 

ask whether the relationship was S-shaped rather than U-shaped.  

 For recall, the pooled estimate of the linear effect, β = -0.269 (95 % CI [-0.795, 0.253]) had 

a BF10 = 0.428, which is comparable to PB10 = 0.105 reported for Experiment 2b above; while the 

pooled estimate of the quadratic effect, β = 0.408 (95 % CI [0.205, 0.612]), had a BF10 = 471, again 

is comparable to the above PB10 = 387. Importantly, there was no evidence in favour of a cubic 

effect, β = 0.347 (95 % CI [-0.17, 0.87]), BF10 = 0.586.  
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 For 3AFC, the pooled estimate of the linear effect, β = -0.0495 (95 % CI [-0.606, 0.503]), 

had a BF10 = 0.276, comparable to the above PB10 = 0.41, while the pooled estimate of the 

quadratic effect, β = 0.342 (95 % CI [0.131, 0.556]), had a BF10 = 30, comparable to the above PB10 

= 13.2. Again there was no evidence in favour of a cubic effect, β = 0.238 (95 % CI [-0.314, 0.792]), 

BF10 = 0.388.  

 Finally, for recollection, the pooled estimate of the linear effect, β = -0.923 (95 % CI [-1.46, 

-0.393]), had a BF10 = 81, comparable to the above PB10 = 27, while the pooled estimate of the 

quadratic effect, β = 0.414 (95 % CI [0.214, 0.615]), had a BF10 = 305, comparable to the above 

PB10 = 135. In contrast to 3AFC and recall, there was moderate evidence in favour of a cubic effect, 

β = 0.634 (95 % CI [0.108, 1.17]), BF10 = 4.22; however this was much smaller than the extreme 

evidence for a quadratic effect.  

Overall, while there were small differences due to numerical sampling and due to ignoring 

the covariance between parameters (see main text), pooling the Bayes Factors across 

experiments (PB) gave similar results to calculating the Bayes Factors on pooled data.  
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S8. Interrupted regressions 

The idea behind interrupted regression is that evidence for a quadratic component alone does not imply a U-shape. To circumvent this, two 

lines are fit to the data that intersect at a certain point, and a U-shape is inferred if both slopes are different enough from zero and have opposite signs. 

As pre-registered (see https://osf.io/b9dqg), we tested this by combining data across all experiments. To determine the “breaking-point” (bp) where 

the two lines intersect, we fit the model: 

 y ~ xlow + xhigh + high + set + (1 | participant number) + (1 | object number)  

where, if x = object-location expectancy, then: 

 xlow = x – bp if x <= bp and 0 otherwise,  

 xhigh = x – bp if x > bp and 0 otherwise, and 

 high = 1 if x > bp and 0 otherwise (to capture any difference in intercept of the two lines) 

We then tested whether the 95% CIs for both the “leftward” (xlow) slope and “rightward” (xhigh) slopes included zero. To optimise “bp”, we 

tested 10 equally-spaced breaking points within the middle 80% range of the expectancy ratings. Simulations showed that the false positive rate 

remained under 5% for testing these 10 breaking points when accepting a BF10 > 6 as evidence (see https://jaquent.github.io/post/finding-a-u-shape-

https://jaquent.github.io/post/finding-a-u-shape-with-bayesian-interrupted-regression/
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with-bayesian-interrupted-regression/). Results are shown in Tables S8.1-S9.3. below. Note that the breaking point position refers to the scaled 

expectancy values (i.e., after scaling to have a SD of 0.5 for the Bayesian statistics). 

S8.1. Recall 

Breaking 
point # 

Breaking 
point 

position 
β1 2.5% 97.5% BF10 

BF10 

(1-tailed) 
β2 2.5% 97.5% BF10 

BF10 

(1-tailed) 

1 
-0.734 -0.0117 -2.36 2.29 0.994 0.985 0.066

8 

-0.154 0.291 0.132 0.188 

2 -0.576 0.268 -1.63 2.3 0.931 0.736 0.263 -0.0122 0.536 0.796 1.54 

3 -0.417 -0.0109 -1.3 1.28 0.628 0.639 0.521 0.187 0.856 17.1 34.2 

4 -0.258 -0.849 -1.8 0.0812 2.41 4.64 0.529 0.147 0.917 7.06 14.1 

5 -0.0995 -0.613 -1.23 0.00584 2.08 4.05 0.725 0.23 1.22 13.6 27.1 

6 0.0592 -0.778 -1.3 -0.284 27.5 54.9 0.687 0.0642 1.34 3.18 6.27 

7 0.218 -0.383 -0.776 0.0137 1.16 2.25 1.35 0.462 2.27 35.9 71.7 

8 0.377 -0.35 -0.667 -0.0316 1.71 3.37 1.78 0.364 3.27 16.2 32.2 

9 0.535 -0.307 -0.581 -0.0372 1.67 3.3 1.15 -0.724 3.45 1.65 2.89 

https://jaquent.github.io/post/finding-a-u-shape-with-bayesian-interrupted-regression/
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10 
0.694 -0.189 -0.413 0.0344 0.443 0.845 0.015

3 

-2.31 2.35 1.05 1.05 

Table S8.1: A U-shape was found for breaking point 6 for recall as the CI and the BFs indicated that both slopes have opposite signs and are different 
from zero. 

 

S8.2. 3AFC 

 

Breaking 
point # 

Breaking 
point 

position 
β1 2.5% 97.5% BF10 

BF10 

(1-tailed) 
β2 2.5% 97.5% BF10 

BF10 

(1-tailed) 

1 -0.734 0.0077 -2.31 2.3 1.05 1.04 0.272 0.0303 0.514 1.42 2.81 

2 -0.575 -0.629 -2.92 1.34 1.05 1.52 0.397 0.117 0.678 5.88 11.7 

3 -0.417 -0.537 -1.91 0.803 0.863 1.34 0.549 0.212 0.893 29.2 58.4 

4 -0.258 -0.835 -1.77 0.116 2.06 3.93 0.505 0.105 0.918 4.28 8.48 

5 -0.0995 -0.513 -1.16 0.137 1.08 2.02 0.554 0.0277 1.08 2.38 4.66 

6 0.059 -0.313 -0.82 0.21 0.491 0.868 0.752 0.111 1.42 4.36 8.63 

7 0.218 -0.006 -0.42 0.406 0.202 0.206 1.64 0.686 2.61 117 233 

8 0.376 -0.126 -0.46 0.211 0.217 0.334 2.24 0.706 3.95 44.3 88.4 
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9 0.535 -0.191 -0.47 0.0887 0.307 0.556 1.1 -0.777 3.57 1.5 2.57 

10 0.693 -0.0904 -0.33 0.144 0.156 0.243 0.0618 -2.28 2.5 0.991 1.04 

Table S8.2: No U-shape was detected for 3AFC as the CI and the BFs (order restricted) indicated that there is enough evidence that both slopes have 

opposite signs and are different from zero.  

S8.3. Recollection 

Breaking 
point # 

Breaking 
point 

position 
β1 2.5% 97.5% BF10 

BF10 

(1-tailed) 
β2 2.5% 97.5% BF10 

BF10 

(1-tailed) 

1 -0.732 0.0129 -2.3 2.38 1 0.994 -0.345 -0.545 -0.147 20.4 0.0136 

2 -0.573 0.0084 -1.8 1.88 0.871 0.859 -0.152 -0.419 0.115 0.237 0.0643 

3 -0.415 -0.088 -1.41 1.19 0.643 0.71 0.0757 -0.232 0.39 0.172 0.236 

4 -0.257 -0.771 -1.7 0.168 1.75 3.33 0.127 -0.242 0.49 0.229 0.347 

5 -0.0989 -0.725 -1.35 -0.108 4.25 8.4 0.481 0.0024 0.949 1.67 3.26 

6 0.0593 -0.854 -1.36 -0.348 46 92 0.843 0.213 1.48 12.2 24.4 

7 0.217 -0.841 -1.23 -0.454 310 620 1.22 0.37 2.1 20.3 40.4 

8 0.376 -0.816 -1.15 -0.495 4340 8690 1.67 0.325 3.15 12.9 25.6 

9 0.534 -0.722 -0.99 -0.451 3570 7140 1.98 -0.132 4.77 4.39 8.45 
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10 0.692 -0.616 -0.84 -0.389 3410 6810 0.137 -2.22 2.6 0.972 1.07 

            

Table S8.3: A U-shape was found for breaking points 5 - 9 in recollection as the CI and the BFs indicated that both slopes have opposite signs and are 
different from zero. 
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