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Graded encoding of spatial novelty scales in
the human brain

Jörn A. Quent 1,2, Liangyue Song 1, Xinyu Liang 1, Yueting Su 1,
Wenwen Yu 1,3, He Wang 1,3 & Deniz Vatansever 1,3

Successful navigation relies on the ability to process and encode detailed
information about our dynamic environments. Beyond familiarity, emerging
studies now highlight the crucial role of novelty detection in this process, the
precise neural mechanism of which remains poorly understood. Using ultra-
high field 7T fMRI, we investigated how the human brain encodes spatial
novelty during virtual navigation, with a particular focus on graded repre-
sentations that follow systematic transitions between novel and familiar
spaces. Our results revealed novelty and familiarity specific neural responses
within the posterior and anterior poles of the bilateral hippocampus, respec-
tively. On the cortical surface, two separable streams of activity patterns were
observed in which regions within the visual and frontoparietal networks
showed novelty-specific activity, while somatomotor, ventral attention and
default mode regions preferred spatial familiarity. Importantly, we identified a
distinct gradient along the hippocampal long axis and demonstrated the
extended contribution of the posterior medial cortex to the encoding of
spatial novelty scales that were intrinsically coupled with the hippocampal
gradient. These findings advance our understanding of how the human brain
encodes and processes spatial information, suggesting that graded repre-
sentations of spatial novelty may serve as a fundamental organizational prin-
ciple for spatial cognition in the human brain.

In parallel with other animal species, humans possess a remarkable
capacity for encodingdetailed spatial informationabout their dynamic
and complex environments. As we explore and interact with our sur-
roundings, we gradually develop cognitive maps that enable us to
navigate efficiently and plan goal-directed actions1–3. This spatial cog-
nitive ability not only enhances related skills such as object manip-
ulation and visualisation4, but is also crucial for healthy brain function,
with its impairment showing notable links to memory disorders5–8.

While environmental familiarity undoubtedly influences how we
use spatial representations9–11, emerging studies now indicate that
novelty may also play an equally important role in effective
navigation12. The detection of novelty, particularly when it deviates
from expectations, serves as a powerful learning signal that enhances

memory formation13. At the neural level, prior neuroimaging studies
have demonstrated increased hippocampal activity in response to
spatial novelty12,14,15. In addition to the recognised importance of the
hippocampus in the formation, maintenance and use of cognitive
maps for the neural representation of our spatial environments16, a
potential role for this medial temporal lobe structure in the encoding
of spatial novelty aligns with its observed sensitivity to novelty and
surprise in other contexts, such as the detection of new or irregular
images or unexpected sequences17–19. Nevertheless, despite the emer-
ging importance ascribed to spatial novelty for effective
navigation20–22, our understanding of the neural encoding mechanism
of this process within the complex functional organisation of the
human brain remains limited, requiring further investigation22,23.
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While the hippocampus maintains a relatively uniform internal
circuitry24,25, a pattern of graded differentiation has consistently been
observed along its anterior-to-posterior axis in humans (analogous to
the ventral-to-dorsal axis in rodents26,27), which may potentially serve
as a key organisational mechanism for encoding environmental rela-
tions. These hippocampal gradients encompass various intrinsic fea-
tures, including connectivity patterns, receptor distribution, tau
pathology and gene expression profiles, as well as informational
content26–29. Furthermore, representations like increasing receptive
fields of rodent place cells appear to facilitate effective coding of
environments for goal-directed behaviour25. In humans, similar gra-
dients were identified for visual processing30, for ongoing cognition at
rest31,32 and during spatial navigation32–34, with recent evidence alluding
to the potential preservation of this coding mechanism through evo-
lutionary expansion35.

Importantly, these spatial processing gradients in humans have
been shown to extend beyond the hippocampus into neocortical
regions, such as theposteriormedial cortex36, indicating abroader role
for the gradient-based encoding of spatial information in the human
brain. Recent studies suggest that such gradients may reflect a fun-
damental macro-scale organisational principle across multiple cogni-
tive domains37. For example, anterior parts of the retrosplenial cortex
and parahippocampal place area have been shown to encode succes-
sively wider temporal representations38, while gradients spanning
regions within the default mode and frontoparietal networks are sug-
gested to correlate with changes in long-term memory demands dur-
ing semantic processing37,39. In the context of spatial representations,
the posterior medial cortex demonstrates a gradient of spatial scales
ranging from local (e.g. rooms) to global (e.g. continents) that mirrors
the hippocampal organisation36. Together, converging evidence sug-
gests that graded representations may constitute a key encoding
mechanism for the neural representation of knowledge in the human
brain, including spatial information40.

In this study, our main objective was to investigate the neural
mechanisms underlying the processing of spatial novelty during nat-
uralistic virtual navigation. Based on prior evidence41,42, we hypothe-
sised that spatial novelty-to-familiarity follows a graded representation
across both the hippocampus and extra-hippocampal brain regions.
Using ultra-high field 7T fMRI, we recorded brain activity as partici-
pants actively explored a virtual reality environment. In addition to
parametric modulation43, our category-selective analytical
approach36,44, allowed us to characterise neural responses during
continuous transitions between novel and familiar sectors of a natur-
alistic environment. Importantly, our viewpoint-invariant analysis
focused solely on positional information, which is an essential hall-
mark of cognitive maps2. Beyond identifying gradients across the
hippocampal long axis, the results of our study highlighted the com-
plementary role of the posterior medial cortex in the graded repre-
sentation of spatial novelty-to-familiarity during virtual navigation. In
addition to advancingour understanding of spatial information coding
in the human brain, our findings may have important implications for
memory disorders and the development of future generation, brain-
inspired artificial agents.

Results
Modelling of spatial novelty during virtual navigation
During 7T fMRI scanning, a total of 56 participants freely navigated an
open plane, circular arena with extra-boundary landmarks (e.g. trees,
buildings and mountains) while performing an Object Location
Memory (OLM) task (Fig. 1a, b). In the encodingphase, the participants’
goalwas tomove through the environment via translation and rotation
in order to collect six objects while memorising spatial locations for
later retrieval. In total, all participants completed two encoding runs
with 18 trials each, collecting every object three times per run (Fig. 1b).
On average, a run took 360 s (SD = 55 s) to complete. To characterise

the participants’ experience of spatial novelty, the environment was
divided into 100 hexagonal sectors using Voronoi tessellation, and
positional time series were grouped into discrete events based on the
sector occupied at each time point.

Across the two task runs, participants visited an average of 50
sectors (SD = 2), with a maximum of 18 visits (SD = 1.6) to any single
sector. The time elapsed between revisits to the same sector ranged
fromanaverageminimumof6.7 s (SD = 2.3) to an averagemaximumof
1300 s (SD = 310). During this naturalistic behaviour paradigm, parti-
cipants spent 55% of their time translating, 24% rotating, and 21% sta-
tionary (SD = 8.2, 4, 6.3%, respectively). On average, participants
travelled a total of 3200 vm (SD = 140), covering substantial portions
of the 180 vm diameter circular environment. Importantly, the
majority of sectors had a Rayleigh vector length that was below 0.5
(0 = total uniformity, 1 = all angles are the same; mean=0.37, SD =
0.23), which is a measure of the uniformity of angles around a circle.
This indicates that the participants’ sector visits were not limited to a
single visual perspective (Fig. 1c). As expected, with repeated pre-
sentation of objects across trials, participants showed a significant
reduction in their navigation time indicating gradual learning of object
locations (−1.74 s (95% CI [−2.06, −1.40]), Supplementary Fig. S1).
Together, these results affirm the participants’ familiarisation with the
environment through active exploration, thus validating the quantifi-
cation of a continuous spatial novelty score.

To model spatial novelty, we calculated the number of times
each sector was visited and the time elapsed between visits to the
same sector. Using these two metrics, an aggregate novelty score
was calculated for each event in each run for each participant.
Bayesian hierarchical modelling revealed a decrease in this novelty
score over the course of the experiment, while participants actively
explored the environment (Fig. 1d; first run: −0.48 SDs, 95% CI
[−0.55, −0.41]; second run: −0.71 SDs, 95% CI [−0.75, −0.66]). As
expected, the decrease in the novelty score over time was steeper in
the second run of the task. Additionally, we assessed whether the
novelty score correlated with changes in locomotion as participants
encountered novel sectors. We found that participants spent more
time being stationary and rotating in novel sectors (Supplementary
Fig. S2), suggesting that these moments involved increased delib-
eration to process novel spatial information45. Using quantiles, the
individual-specific spatial novelty scores were then discretised into
six levels for each participant, ranging from novel to familiar (i.e.
Level 1 = highly novel, Level 6 = highly familiar), for subsequent
neuroimaging analyses. Areal partitioning of the environment to
inner and outer circles6 indicated that the highly novel events were
uniformly distributed across the centre and periphery, which
ensured that experiencing novelty was not confounded by centrality
(Supplementary Fig. S3).

Mapping spatial novelty along the hippocampal long axis
Given the central role of the hippocampus in spatial navigation and
novelty processing12, our initial analysis of the 7T fMRI data focused on
characterising the sensitivity of this region to systematic variations in
spatial novelty/familiarity, which were quantified from participants’
naturalistic behaviour during spatial navigation.

A linear contrast across the six discretised novelty levels revealed
significant sensitivity of the bilateral anterior hippocampus, extending
into the amygdala, to systematic changes in spatial novelty during
virtual navigation (Fig. 2a and Supplementary Table S2, Cluster IDs =
193, 194). In these parts of the hippocampus, greater activity was
observed while participants navigated through highly familiar sectors
of the virtual reality environment, whereas mid-to-posterior portions
displayed greater activity for higher spatial novelty. Additional control
analyses investigating the potential role of centrality on the observed
effects revealed negligible influence of this environmental factor on
spatial novelty responses (Supplementary Figs. S4, S5).
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Our subsequent aim was to directly investigate the existence of a
graded representation of spatial novelty-to-familiarity scales along the
hippocampal long axis. For that purpose, we first employed a normal-
based point to plane/curve projection that better captured the shape
and angle of the hippocampus (Fig. 2b). A novelty preference level
(Level 1: highly novel, Level 6: highly familiar) was then assigned to
each hippocampal voxel based on the strength of their selective
responses and voxels with the same axial position were then averaged.
Using this positional information, as well as nuisance variables such as
temporal signal-to-noise ratio and global signal, we predicted the

average novelty versus familiarity preference while shuffling the voxel
labels 100,000 times. In order to investigate hemispheric differences
in graded representations46, we included voxels from both the right
and the left hippocampus in the analysis, modelling the interaction
between longitudinal axis position and brain hemisphere.

When investigating novelty preference based on the minimum z-
statistic, the effect of positionwas significantly different across the two
hemispheres (β =0.022, η² = 0.03, p =0.021). Importantly, separate
models for each hemisphere revealed that position significantly
affected novelty preference in both the left (β =0.021, η² = 0.053,

Fig. 1 | Experimental design and behavioural performance during virtual
navigation. a The virtual environment designed for this experiment was a circular
grassy plane arena enclosed by a 180 virtual metres (vm) diameter brick wall with
extra-maze landmarks. b Task trials started with the presentation of a cued object
image (2 s) and a variable delay (1−2 s). Participants were instructed to collect the
target object and memorise its location for future retrieval. c During encoding,
participants travelled large distances (mean = 3200 vm, SD= 140 vm, N = 56) with
varying event durations (mean = 2.5 s, SD= 2.1 s, N = 8755), which are visualised as
density plots with individual data points (for each participant and each event). The
majority of sectors had a Rayleigh vector length below 0.5 (0 = total uniformity, 1 =
all angles are the same; mean =0.37, SD=0.23, N = 72), indicating that the partici-
pants’ sector visits were independent of specific viewpoints. The histogram illus-
trates the distribution across sectors, while the dashed black line indicates the
average. Participants spent 55%of their time translating, followed by rotating (24%)

and being stationary (21 %, N = 56). While boxplots visualise themedian (horizontal
black line), hinges of the boxes denote the 25th and 75th percentiles, and whiskers
extent to themost extreme values no further than 1.5 times the IQR from the hinge.
The white triangle represents the mean. d Overall, participants actively explored
the majority of the environment as indicated by 3D histograms that display the
average number of discrete visits and the average time elapsed between visits
across 100 hexagonal sectors. The heights and colours represent visits and sec-
onds. These two measures were then used to calculate an aggregate novelty score
for each event in each run for each participant. Bayesian hierarchical modelling
revealed an expected decrease in novelty score over time (first run: −0.48 SDs, 95%
CI [−0.55, −0.41]; second run: −0.71 SDs, 95% CI [−0.75, −0.66]), reflecting the
participants’ active encoding of the environment. Source data are provided as a
Source Data file.
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p =0.021) and right hemispheres (β =0.039,η² = 0.154,p <0.001),with
a stronger effect observed in the right hemisphere (Fig. 2c). Together
these results indicated a significant graded representation of spatial
novelty-to-familiarity along the posterior to anterior axis of the bilat-
eral hippocampus.

Similar results were replicatedwhen using themaximum z-statistic
(see Supplementary Fig. S6) and non-averaged raw voxel preference for
spatial novelty levels (Supplementary Fig. S7). In order to ensure that
our results were not an artefact of group-level averaging, we also esti-
mated graded representations at the individual level. Providing con-
verging evidence (Fig. 2c), we found significant slopes in the right

hippocampus (mean β =0.0093, SD=0.017, BF10 = 149, d =0.54) but
not in the left hippocampus (mean β =0.0037, SD=0.017, BF10 =0.49,
d =0.21). Despite these hemispheric disparities, a direct comparison
between the two hemispheres yielded inconclusive evidence for a dif-
ference (mean β =0.0056, SD=0.017, BF10 = 2.04, d =0.32).

In summary, our results demonstrate a spatial novelty-to-
familiarity gradient, with the anterior hippocampus preferring spatial
familiarity and the posterior hippocampus preferring spatial novelty.
Despite stronger effects observed on the right hemisphere, evidence
for a hemispheric difference in this graded representation remains
inconsistent across our analyses.

Fig. 2 | Graded representation of spatial novelty-to-familiarity scales across the
hippocampal long axis. a Spatial novelty versus familiarity responses in the
bilateral hippocampus. Task activation patterns and their anterior-to-posterior
variation are displayedacross sagittal slices for eachhemisphere.While the anterior
hippocampus showed significantly higher activity when participants were in
familiar parts of the environment, the posterior hippocampus responded to spatial
novelty (cFDRp <0.05). Unthresholded z-statistics are shown for visualisation
(red = novelty, blue = familiarity). b To investigate graded representations along
the hippocampal long axis, we developed a method that incorporates the average
shape and angle of the hippocampus, by finding the right angle between the tan-
gent and the line from each voxel to the curve. c Spatial novelty-to-familiarity
gradients are illustrated in scatter plots for the left and right hippocampus sepa-
rately. Each dot represents the average of a number of voxels with the same
anterior-ness value (i.e. distance to the most anterior part in mm) based on the
group-level z-statisticmap (N = 102 for the left hemisphere andN = 104 for the right

hemisphere). Colouring follows the six discretised novelty/familiarity levels. The
black line represents the linear model’s regression line with a 95% confidence
interval (shaded grey area). Regression coefficients and two-tailed p values are
based on the multiple linear regression models estimated via permutation,
including the temporal signal-to-noise ratio as well as the global signal as co-
variates. This group-level analysis showed significant gradients in both the left and
the right hippocampus, while a significant interaction indicated that the gradient
was stronger in the right hemisphere. At the individual-level (N = 56), this analysis
showed a significant gradient in the right hemisphere, with inconclusive evidence
for a significant difference between the two hemispheres. Boxplots visualise the
median (horizontal black line), hinges of the boxes denote the 25th and 75th per-
centiles, and whiskers extend to the most extreme values no further than 1.5 times
the IQR from the hinge. The white triangle represents the mean. No adjustments
were made for multiple comparisons. Source data are provided as a Source
Data file.
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Extension of spatial novelty scales to the posterior
medial cortex
Emerging evidence indicates the involvement of extra-hippocampal
brain regions in spatial cognition, with multiple scales of spatial
representations previously observed along the neocortex36. Thus, our
next aim was to investigate whether graded representation of spatial
novelty-to-familiarity also extended to cortical areas. For that purpose,
we first assessed the sensitivity of the human cortex to systematic
variations in spatial novelty.

The analysis revealed large swaths of cortical regions that were
sensitive to fluctuations in spatial novelty versus familiarity (Fig. 3a).
While a peak cluster in area intraparietal 0 (IP0, Cluster ID = 38)
showed greater response to higher spatial novelty, a peak cluster in
area 6mp (Cluster ID= 87) illustrated a preference for greater famil-
iarity (Supplementary Tables S1, 2).Within the posteriormedial cortex,
the precuneus and retrosplenial cortex primarily exhibited novelty
effects, whereas the central portion of the posterior cingulate cortex
showed sensitivity to spatial familiarity. When described at the level of

macro-scale brain network organisation (i.e. Yeo-7 parcellation47),
large parts of the frontoparietal and visual networks displayed sig-
nificantly higher activity while participants navigated across novel
parts of the virtual reality environment. On the other hand, sections
within the somatomotor, ventral attention and default mode networks
were significantly more active when participants navigated through
familiar sectors of the virtual reality environment. Importantly, our
supplementary analysis showed that regions with increased activity in
response to spatial novelty also exhibited higher activity for objects
that were more successfully encoded in memory. In contrast, regions
responding to spatial familiarity did not show similar activity mod-
ulation based on encoding success (Supplementary Fig. S8). Together,
these results corroborate previous findings highlighting the vital role
played by novelty signals in memory encoding13,48,49.

To further characterise the distribution of the spatial novelty
effects across the cortical surface, we projected significant vertices
onto the principal functional connectivity gradients37. This low-
dimensional representation serves as an alternative coordinate
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Fig. 3 | Extension of spatial novelty-to-familiarity scales to the cortical surface.
aNovelty versus familiarity responses across the cortical surface. Top left flatmaps
and inflated cortical surfaces showz-statistics for novelty versus familiarity contrast
(red = novelty, blue = familiarity) with black lines outlining significant clusters
corrected for multiple comparisons across all grayordinates and two contrasts
(cFDRp <0.05). Our analysis revealed large parts of the cortex that were sensitive to
spatial novelty/familiarity, which is also evident when plotting the distributions of
z-statistics across Yeo et al.47. 7-Networkparcellation asdensity plots.While vertices
within the frontoparietal and visual networks showed greater activity for spatial
novelty, vertices within the somatomotor, ventral attention and default mode
networks displayed greater activity for spatial familiarity. The vertical dashed lines
represent the significance thresholds for both tails after FDR correction. In addi-
tion, projecting significant vertices onto the first two principal functional

connectivity gradients reported by ref. 37 allowed the separation of novelty versus
familiarity responses with high accuracy (SVM, 95.17%). Dots are coloured based on
the sign of the z-statistic. For easier interpretation, the locations of the Yeo-7 net-
works are also visualised in the same space. b Applying our modified depth-first-
search algorithm across thewhole brain, only a bilateral regionwithin the posterior
medial cortex exhibited a graded representation of spatial familiarity to novelty,
starting in the centre of a region within the default network (31pv) that lies at the
border between ventral and dorsal posterior cingulate cortex and extending
towards peripheral visual cortices (POS1). While the surrounding areas of the
posterior medial cortex, including the retrosplenial cortex, the precuneus and the
outer edges of the ventral and dorsal posterior cingulate cortex, preferred novelty,
the centre of the posterior cingulate cortex preferred familiarity in a centre-
surround pattern. Source data are provided as a Source Data file.
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system that orders vertices based on intrinsic connectivity profiles
instead of spatial proximity, offering a new perspective on brain
organisation. When projected onto the first (unimodal to transmodal)
and second (visual to somatomotor) principal gradients, a high degree
of separability was observed between vertices showing novelty versus
familiarity effects (4-fold SVM classification accuracy = 95.17%; Fig. 3a),
indicating two complementary processing streams with distinguish-
able sensitivity to spatial novelty versus familiarity.

Given such separable responses along the functional connectivity
gradients, our next objective was to assess the possibility of a graded
representation of spatial novelty-to-familiarity scales along the cortical
surface. We followed the same approach that was employed for the
hippocampus, in which each vertex was assigned a novelty preference
level based on the strength of its category-selective responses to dis-
tinct levels of spatial novelty. A maze-solving algorithm was then
adapted to travel along the cortical surface to identify regions of
interest inwhich novelty preferencemoved in a stepwisemanner. Peak
regions from Level 6 (highly familiar) were used as starting points for
the algorithm. Only Level 5 was allowed to be skipped as no selective
activity patterns were observed for this level.

Across all the peaks investigated in this analysis, graded repre-
sentations were identified solely within the bilateral posterior medial
cortex (Fig. 3b). This circular gradient started from a cluster within a
core region of the default mode network, namely Area 31pd/31pv that
showed selectivity for spatial familiarity and extended outwards in a
centre-surround pattern to regions within the visual cortex such as
DVT/POS1 (e.g. retrosplenial cortex) and frontoparietal network that
selectively responded to spatial novelty.

To further characterise these graded representations within the
posterior medial cortex, we investigated the correspondence between
our task-based spatial novelty-to-familiarity responses in the cortex
and the principal functional connectivity gradient37. Here, we found a
monotone relationship where vertices preferring novelty (e.g. Level 1
vertices) had lower values on the first principal gradient compared
with vertices preferring navigation through familiar sectors (e.g. Level
6 vertices; Supplementary Fig. S9). In other words, novelty preference
was linked to the unimodal visual end of the first principal gradient,
whereas familiarity preference was linked to the transmodal default
mode end of this organisational system.

Cortico-hippocampal connectivity across spatial novelty scales
Our in-depth analysis revealed graded representations of spatial
novelty-to- familiarity along both the hippocampal long axis and pos-
terior medial cortex. A wealth of research now suggests that regions
sharing similar functional specialisations are intrinsically co-organised,
showing stronger resting-state coupling as a marker of coordinated
processing50. Next, we asked whether voxels in the hippocampus
showed tighter functional couplingwith those vertices in the posterior
medial cortex that share the same novelty/familiarity preference.

For that purpose, we analysed functional connectivity estimates
based on resting-state fMRI data collected from the same participants
(Fig. 4). While controlling for the mean effect of novelty levels in the
hippocampus and in the posterior medial cortex, we found a sig-
nificant estimated average difference when comparing pairs of within
novelty versus between novelty preference levels 0.0831 SDs 95% CI
[0.061, 0.106]. In other words, the parts of the hippocampus and the
posterior medial cortex that shared the same preference levels for
spatial novelty-familiarity were more tightly coupled in comparison to
those that showed diverging preference levels.

In parallel, the anterior hippocampus aligned more strongly with
the principal gradients that differentiate the default mode from other
networks, than did representations in the posterior hippocampus.
Mirroring our task and resting-state-based analyses, this supports a
closer relationship between the anterior hippocampus and the default
mode network, consistent with recent work29,35,42,51 (Supplementary
Fig. S10).

Discussion
In this study, our primary objective was to investigate how the human
brain processes spatial novelty during naturalistic navigation in a vir-
tual reality environment. Specifically, we examined whether graded
representations serve as a neural mechanism for encoding spatial
novelty across both the hippocampus and extra-hippocampal brain
regions. Our findings revealed several key insights. First, the hippo-
campus exhibited significant sensitivity to systematic variations in
spatial novelty, with distinct activity profiles observed across its
longitudinal poles. While the bilateral anterior hippocampus showed
heightened activity in response to spatial familiarity, the mid-to-
posterior portions responded to spatial novelty. Crucially, we

Fig. 4 | Connectivity of the hippocampus and posterior medial cortex across
spatial novelty scales. a Prior work suggests that functionally related regions tend
to couple more strongly at rest, reflecting their coordinated role in information
processing50. As illustrated in a schematic, we expected stronger connectivity
within the same than between different novelty levels. For this, Fisher
z-transformed Pearson correlation values from a dense connectivity matrix were
averaged for each level combination in the hippocampal voxels and the posterior
medial cortex vertices. b Bayesian hierarchical regression was then used to inves-
tigate whether connectivity was higher within the same novelty level (e.g. Level 6 in
hippocampus andLevel 6 in posteriormedial cortex) compared tobetweennovelty
levels (e.g. Level 6 in hippocampus and 4 in posterior medial cortex) while con-
trolling for themain effects of cortical and hippocampal novelty levels. The average

marginal effect at the group-level (0.0831 SDs 95% CI [0.061, 0.106]) showed a
robust effect, indicating stronger connectivity for vertex-voxel pairs that shared the
same versus divergent novelty preference levels. The density plot illustrates the
posterior distribution of the group-level marginal effect (based on 50,000 sam-
ples). The point represents themedian, while the thick and thinblack line below the
distribution represent the 66% and 95% quantile interval, respectively. c This effect
was also robust at the individual level (N = 56). Here, average marginal effects
(within the samenovelty levelminus between novelty levels) are visualisedwith the
median and the 95% quantile interval for each individual separately, demonstrating
that within novelty level connectivity was stronger across the vast number of par-
ticipants, as indicated by the lackof overlapwith zero (dashed line). Sourcedata are
provided as a Source Data file.
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identified a graded representation of spatial novelty-to-familiarity
along the hippocampal long axis.

Beyond the medial temporal lobe, our results additionally
highlighted two distinct cortical processing streams: regions within
the visual and frontoparietal networks responded preferentially to
spatial novelty, whereas somatomotor, ventral attention and default
mode network regions displayed greater activity for familiar sectors
of the environment. Importantly, we observed a graded repre-
sentation of spatial novelty scales within the posterior parietal cor-
tex, extending from a key posterior default mode network region
towards visual and frontoparietal areas in a centre-surround pattern.
Furthermore, we found that hippocampal and posterior parietal
cortex clusters with matching novelty preferences demonstrated
stronger connectivity at rest, suggesting an intrinsic functional
coupling between these two gradients. Collectively, our findings
indicate that graded representations of spatial novelty-to-familiarity
serve as a fundamental organisational mechanism for encoding
spatial information.

Converging evidence acrossdecades of animal researchhasfirmly
established the hippocampus as a critical component of the brain’s
navigational circuitry16. In particular, the discovery of place cells and
other spatially tuned neurons, such as grid cells, head direction cells
and border cells, has collectively demonstrated the medial temporal
lobe’s essential role in representing spatial environments1,52. A well-
documented characteristic of hippocampal function is the division of
labour along its longitudinal axis. The anterior hippocampus is gen-
erally thought to process coarse and generalised spatial information,
while the posterior hippocampus is implicated in detailed perceptual
representations33,40,53.

Consistent with this framework, our results show that the anterior
hippocampus exhibits significant sensitivity to view-invariant proces-
sing of familiar spaces during naturalistic virtual navigation. The
capacity to represent spatially coherent scenes is essential not only for
recognising environments and recalling autobiographical events but
also for constructing novel scenes that facilitate generalisation and
imagination of future scenarios54,55. Supporting this view, prior
research has demonstrated the anterior hippocampus’ role in forming
and utilising schemata, with recent studies providing evidence for
schematic spatial representations in this region during virtual
navigation56–58. Taken together, these findings underscore the anterior
hippocampus’ contribution to the processing of familiar spaces, a
function that may be crucial for constructing cognitive maps that
support efficient navigation.

However, our findings are also in contrast with some prior studies
employing different experimental paradigms that have reported
increased anterior hippocampal activity in response to certain types of
novelty (e.g. unexpected stimuli in visual sequences) or have failed to
detect familiarity-related responses in this region17,41,59,60. The hetero-
geneity of novelty (or surprise) as a concept complicates direct com-
parisons across studies13, as task designs and contrasts vary
substantially. This variability is reminiscent of the ongoing debate
regarding the anterior-posterior distinction in processing global/
coarse versus local/fine spatial information34,56. Nonetheless, our data
are in line with the notion that the anterior hippocampus is primarily
engaged by memory-based processes, whereas the posterior hippo-
campus is more responsive to perceptual processes such as salience-
based novelty. This interpretation aligns closely with recent findings42

demonstrating that the anterior hippocampus is preferentially acti-
vated by remembering and imagining episodic scenarios, while the
posterior hippocampus shows sensitivity to salience-based novelty
and transitions between task blocks. While the evidence for this dis-
tinction in virtual reality paradigms remains mixed12,15, a general trend
in the literature suggests that memory-derived novelty engages the
anterior hippocampus17,24,61,62 whereas salience-based novelty, such as
target detection, activates the posterior hippocampus18,42.

As such, our findings contribute to an emerging framework that
reconciles previous inconsistencies in hippocampal function by dis-
tinguishing between memory-driven and perception-driven
processing40. This perspective may account for why scene
perception61 and perceptual strength-based processing63 pre-
dominantly engage the posterior hippocampus. Similarly, the findings
in which the anterior hippocampus was shown to selectively activate
when participants judged distances on a global scale (e.g. continents)
while the posteriorhippocampuswas engaged for local-scale decisions
(e.g. rooms), can also be interpreted as global information relying
more on memory and schemata, whereas local information relying
more on perception36. Thus, the novelty-familiarity gradient we report
mirrors prior research demonstrating the sensitivity of the hippo-
campus to various types of novelty17–19 while also aligningwith broader
physiological and functional gradients observed in receptor distribu-
tions, gene expression and pathology studies27,28 as well as functional
gradients25,32–36. More broadly, the presence of multiple spatial and
non-spatial gradients within the hippocampus supports the proposal
that this structure enables general-purpose computations through a
geometric neural code that originally evolved for spatial navigation64.

In addition to the seminal role ascribed to the hippocampus in
spatial cognition, our findings further emphasise the importance of
extra-hippocampal brain regions in spatial navigation23,65. Specifically,
the retrosplenial cortex, known for allocentric positional coding58,66,67

and the parahippocampal cortex, essential for landmark
recognition68,69, both exhibited sensitivity to spatial novelty in our
virtual reality experiment. Additionally, the amygdala, traditionally
associated with affective processing, showed increased activity in
familiar sectors70, reinforcing its broader role inmnemonic processing
and novelty detection59,71–74. These results collectively suggest that a
more extensive neural network contributes to distinguishing between
novel and familiar sectors of an environment during spatial navigation.

Our analysis further revealed distinct patterns of novelty and
familiarity representation across the cortical surface. Regions within
the visual and frontoparietal networks exhibited stronger responses to
novelty, whereas the somatomotor, ventral attention and default
mode networks showed greater activity when navigating familiar sec-
tors. The distinctiveness of the processing streams became evenmore
apparent when mapped onto the principal functional connectivity
gradients, an alternative coordinate system that represents a funda-
mental organisational architecture in the human brain37. The dis-
tribution of brain regions preferring spatial novelty and familiarity not
only matched those that report continuous scale gradients36 but also
those that contrast novelty and memory42,75.

Historically, the navigational neural circuitry has been primarily
associatedwith scene-processing regions in the visual cortex, aswell as
transmodal cortices that are involved in salience detection, executive
control and flexible cognition76,77. However, emerging perspectives
now highlight a potential role for the default mode network in spatial
cognition24, particularly during coasting of familiar spaces23. This
aligns with previous reports linking the default mode network to the
automated application of learned rules78 and the automatic retrieval of
strongly encoded episodic and semantic memories79, further indicat-
ing a role for this domain-general “core recollection network”80 in the
organisation of both spatial and non-spatial knowledge. As such, it will
be imperative for future research to investigate the exact role of this
large-scale brain network in spatial cognition and its potential rele-
vance for effective navigation in the real world.

Crucially, our investigation of graded representations across the
cortical surface revealed the representation of spatial novelty-to-
familiarity scales specifically centred on the posteriormedial cortex. In
linewith recent anatomicalmodels81, the ventral/dorsal portions of the
posterior cingulate cortex, a key hub of the default mode network,
showed a preference for highly familiar sectors of the environment.
This gradually dissipated in a stepwise manner, shifting toward higher
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novelty preference in the visual and frontoparietal network regions,
creating a macro-scale centre-surround organisation that exhibited a
similar arrangement to that of the principal functional connectivity
gradients. Furthermore, our investigation of intrinsic connectivity
between hippocampal and cortical gradients showed stronger con-
nectivity between clusters with matching novelty preferences. These
results align with prior reports, showing greater connectivity between
anterior portions of the hippocampus and the default mode network,
while posterior portions connect more strongly with visual and fron-
toparietal control regions35,42,82. This suggests that gradient-like
representations, similar to those observed in connectivity-profiles37,
represent a general pattern of brain organisation that coexists along-
side clear regional boundaries83,84. Further research will be required to
assess how such regional gradients are situated within the broader
macro-scale organisation of the human brain, specifically within the
processing of spatial information.

Novelty processing has long been theorised to play a critical role
inmemory encoding13,48,49. Consistent with this view, regions identified
as sensitive to novelty in our analysis also exhibited stronger activation
during processing ofmore successfully encodedobjects. Coupledwith
our finding that participants engaged in more encoding-related
behaviours when encountering novel parts of the environment,
these results underscore the importance of spatial novelty processing
for memory formation. Unlike previous studies49, our definitions of
novelty and successful encoding were independent, as they were
derived from distinct levels of analysis. This independence provides
compelling evidence that novelty processing contributes directly to
memory encoding rather than reflecting a methodological confound.

Despite the robustness of our findings across multiple levels of
analysis, several limitations warrant consideration. First, we only
assessed spatial novelty within a single environment rather than across
multiple contexts. To enhance generalisability, future research should
compare novelty processing both within and between environments,
incorporating variations in spatial scale. Additionally, our focus was
limited to linear novelty gradients, yet it is possible that certain spatial
representations follow non-linear organisational principles. Further
investigation is needed to explore such complexities. Moreover, sev-
eral prior studies have highlighted the influence of environmental
factors, such as centrality (i.e. distance to the border), on hippocampal
responses6,15. Although we implemented controls at the experimental
design stage and conducted supplementary analyses (Supplementary
Figs. S4, S5), which showed minimal influence of this factor on our
results, it is unlikely that the effects of these and other environmental
factors can be fully disentangled from the spatial novelty-to-familiarity
responses observed during naturalistic navigation. Likewise, distinc-
tions along the hippocampal long axis have been linked to differential
contributions of encoding and retrieval85–88. While our design sought
to minimise retrieval demands and our analyses accounted for inci-
dentalmemory retrieval effects, these influences cannot be completely
ruled out in a naturalistic navigation paradigm with free behaviour.
Future research will therefore be needed to systematically investigate
how such factors map onto hippocampal representations.

In conclusion, our investigation provides novel insights into how
the human brain processes spatial information. Using 7T fMRI during
virtual navigation, we identified distinct functional divisions along the
hippocampal long axis, with the anterior hippocampus preferentially
processing familiar environments and the posterior hippocampus
responding to novel spatial information. Beyond a binary distinction,
we revealed continuous gradients of spatial novelty-to-familiarity
encoding in both the hippocampus and posteriormedial cortex. These
graded representations were further supported by intrinsic con-
nectivity patterns linking regions with similar novelty preferences,
suggesting a fundamental neural principle underlying the processing
of spatial information. Our results, therefore, add to the growing body
of work highlighting the topographic organisation of knowledge in the

human brain (e.g. semantic maps89) and significantly advance the
understanding of hippocampal and cortical function in spatial cogni-
tion and their broader role in the formation and use of cognitivemaps
for navigation.

Methods
Participants
All experimental procedures complied with the Declaration of Hel-
sinki, Ethical Principles for Medical Research Involving Human Parti-
cipants, and were approved by the ISTBI institutional review board
(AF/SC-21/20210604). Participants provided informedconsent prior to
study commencement and were compensated 100 RMB per hour. In
line with the inclusion/exclusion criteria, participants were right-
handed healthy individuals with normal or corrected-to-normal vision
and with no known history of psychiatric or neurological disorders. A
totalof sevenparticipantswereexcluded fromdata analysis becauseof
technical errors or performance issues in the virtual navigation task.
The final dataset included 56 participants, who completed all the
required cognitive, behavioural and neuroimaging-based assessments:
age range = 20-37 years, mean age = 24 years (SD = 2.8), female/male
ratio = 35/21.

Experimental procedures
The experiment required two separate visits to the Zhangjiang Inter-
nationalBrain ImagingCentre, FudanUniversity. OnDay 1, participants
were first familiarised with navigating the virtual reality environment
using an independent cognitive paradigm and a practice version of the
main experimental task. Subsequently, a comprehensive neuroima-
ging assessment was conducted using a 3TMRI to acquire anatomical,
resting-state fMRI data and task fMRI runs (not analysed as part of this
study). Post-scanning, participants completed anautomatedbatteryof
cognitive tasks and questionnaires. On Day 2, following a short prac-
tice session outside the scanner, 7T fMRI data were acquired using the
Object Location Memory task with novel hidden object locations. The
average interval between the two neuroimaging sessions was
12 days (SD = 13).

Virtual reality environment and experimental task design
The core experimental paradigm was based on prior studies that used
virtual reality environments to investigate the neural basis of spatial
navigation in humans6,7,55,90. Our environment consisted of a round,
grassy, openplane arena, surroundedby abrickwall (diameter 180vm)
and extra-maze landmarks (mountains, clouds, trees, buildings, etc.).
Participants navigated the arena using a button boxwith three degrees
of freedom (forward translation, left and right rotation) at constant
translation and rotation speeds of 10 vm/s and 50°/s, respectively. A
total of six 3D intra-maze objects were used, chosen for their relative
symmetry along their vertical axes to avoid view-dependent con-
founds. Trial order, object locations, heading directions and starting
positions were randomised based on a set of pre-defined spatial con-
straints (Supplementary Notes S1).

The open-source object location memory task was programmed
using the video game development platform Unity3D, in which the
unity experiment framework (UXF91) was employed to handle data
recording and experimental structure (e.g. trials and blocks). Themain
7T Object LocationMemory task comprised two alternating run types:
encoding and retrieval. This multi-faceted experiment was designed
with several subcomponents to investigate spatial learning and mem-
ory in a controlled virtual reality environment using high-resolution
fMRI. In line with our main research question on spatial novelty, we
focused our fMRI analysis solely on the encoding runs, which were
specifically designed to encourage active exploration of a new spatial
layout, devoid of goal-oriented memory retrieval. The participants’
objective within the encoding runs was to collect and memorise the
spatial locations of six objects for later retrieval. In each of the two

Article https://doi.org/10.1038/s41467-025-67012-z

Nature Communications |          (2026) 17:303 8

www.nature.com/naturecommunications


encoding runs, six objects were presented three times in a pre-
randomised order across a total of 18 trials. Each trial started with the
presentation of a cue image of the target object placed on top of a grey
transparent panel for 2 s (Fig. 1b). This was followed by a variable delay
period of 1−2 s where only the round fixationmarker was visible on the
screen. After this delay phase, participants could navigate towards the
object, which was visible throughout the whole trial and highlighted
with a vertical arrow. The collection of the target object ended the trial,
which was followed by a variable inter-trial interval (ITI) that lasted
1–2 s. On average, each trial lasted 20 s (SD = 3.1) with a total comple-
tion time of 360 s (SD = 55) for each task run.

MRI data acquisition
A high-quality neuroimaging data acquisition procedure was set up
and optimised based on the Human Connectome Project (HCP). In
compliance with the requirements of the HCP minimal pre-processing
pipeline92 relevant data were acquired to aid multi-modal registration
of MRI images. While anatomical measures (T1w, T2w) and resting-
state fMRI data were collected using a 3T Magnetom Prisma MRI
scanner (Siemens, Erlangen, Germany) with a 32-channel head coil,
task fMRI data were acquired using 7T Magnetom Terra MRI scanner
(Siemens, Erlangen, Germany) with a 1-channel transmit and 32-
channel receive array (1Tx/32Rx) head coil (Nova Medical, Wilming-
ton, MA, USA).

At 3T, we collected whole-brain anatomical images using a T1-
weighted MPRAGE sequence (0.7-mm isotropic resolution, TR =
2400ms, TE = 2.02ms, TI = 1000ms, flip angle = 8°, bandwidth = 270
Hz per pixel, no partial Fourier, in-plane acceleration factor (iPAT) = 2,
TA = 7.4min per scan) and a T2-weighted SPACE sequence (0.7-mm
isotropic resolution, TR = 3200ms, TE = 564ms, BW= 744Hz per
pixel, no partial Fourier, iPAT = 2, TA = 8.2min per scan). In addition, a
pair of resting-state fMRI runswas acquiredwith anterior andposterior
phase encoding polarity using a 2D multiband (MB) gradient-recalled
echo (GRE) echo-planar imaging (EPI) sequence (2.0-mm isotropic
resolution, TR = 800ms, TE= 37ms, flip angle = 52°, bandwidth = 270
Hz per pixel, multiband acceleration factor = 8, 488 volumes, TA =
6.4min). With the aim of aiding post-hoc distortion correction, we
also obtained a dual-echo gradient and a pair of spin echo images with
AP and PA phase encoding polarity.

For the main Object Location Memory task fMRI runs at 7T, data
acquisition was performed using anMBGRE-EPI sequence comparable
to 3T but with higher spatial resolution (1.6mm isotropic resolution,
TR = 1000ms, TE= 22.2ms, flip angle = 45°, multiband acceleration
factor = 5, average of 410 and 370 volumes for the two runs, respec-
tively). Associated field maps with matching geometry and echo spa-
cing were also acquired to aid in post-hoc distortion correction of
functional imaging data. During task fMRI runs, the experimental
paradigm was presented on anMRI-compatible rear projection screen
using a PROPixx projector (VPixx Technologies Inc., Canada). The
display was situated inside the scanner bore, which participants
viewed through a mirror attached to the head coil at a 45° angle. The
display-to-mirror distance was measured to be 202.5 cm (resolution
1920 × 1080 at 120Hz, visual angle 6°). All behavioural responses were
recorded using a four-button box.

MRI data pre-processing
The pre-processing of neuroimaging data was performed via Quanti-
tative Neuroimaging Environment and Toolbox (Qunex93) using a
Singularity-based containerised version of the HCP minimal pre-
processing pipeline92.

To summarise this process that is extensively documented else-
where, T1w and T2w structural images were first corrected for distor-
tions, co-registered and warped to the MNI-152 template using a
combination of FMRIB Software Library (FSL) linear and non-linear
image registration tools. The FreeSurfer recon-all pipeline was then

employed to generate grey and white matter tissue segmentations,
cortical surface models and subcortical segmentation masks. The
cortical ribbon based on the pial and white matter surface boundaries
was combined with the subcortical voxels to generate a CIFTI
'grayordinate' space for each individual.

Functional images were motion corrected via alignment to the
single-band reference images, masked to exclude signal from non-
brain tissue, corrected for distortions, registered to structural images
and normalised to the MNI-template (2mm isotropic) in a single
transform step that minimised interpolation costs. The anatomically
defined grey matter cortical ribbon was then employed to convert
fMRI data to the CIFTI matrix. While the cortical surfaces were regis-
tered to the group average HCP atlas (fsLR 32k space) using surface-
based non-linear deformation, the MNI-152 registered subcortical
volume component of the CIFTI image was isolated using FreeSurfer-
defined subcortical segmentation. Additionally, ICA-Fix94,95 wasused to
remove noise components from concatenated runs of resting-state
and task-based fMRI data. Finally, a multi-modal surface matching
(MSMAll) algorithm96,97 functionally aligned all fMRI data using a
combination of myelin and resting-state maps. For task activation
analyses, additional smoothing was applied to achieve a final 4mm
FHWM spatial smoothing across both cortical and subcortical data,
whereas the gradient identification and resting-state analyses were
performed on the native 2mm smoothed version of the data. Sub-
sequent handling of CIFTI files for the neuroimaging data analyses and
visualisations were carried out using ciftiTools98 and Connectome
Workbench99.

Behavioural analyses
Hierarchical Bayesian regression models. For data analysis, several
Bayesian hierarchical regression models were fit using the R package
brms100,101. Unless stated otherwise, we used the same procedure for all
models, including the use of full random effects (slopes and inter-
cepts) for individuals. All models were fit using ten chains each with
10,000 iterations, half of which were used for warm-up. All of them
converged with a maximum R̂ of 1. Posterior predictive cheques were
carried out to evaluate the appropriateness of the response distribu-
tion (Supplementary Fig. S13). For priors, we used N (0, 1) for all fixed
effects, while for all other parameters, we used the default options.
Such generic and weakly informative priors were chosen to regularise
unexpectedly large effects102. Non-categorical predictor variables were
all scaled to have a mean of 0 and a SD of 0.5. Based on these hier-
archicalmodels, averagemarginal effects103 using default comparisons
were estimated, incorporating group-level uncertainty on the
response scale. Thus, effects were reported in vm, seconds or SDs (if
the predicted variable had been scaled), respectively.

To investigate learning during the encoding phase of the experi-
ment (Supplementary Fig. S1), we modelled navigation times in sec-
onds (without scaling) as a function of the number of times the current
object has been presented using a lognormal response distribution. In
order to control for the minimum distance participants had to travel
using theoptimalpath,we also included thedistancebetween the start
and the object location in this model.

Quantification of spatial novelty. In order to investigate the neural
representation of spatial novelty, a continuous novelty score was cal-
culated for each task event based on the participants’ virtual naviga-
tion behaviour in the object locationmemory task. To achieve this, we
divided the virtual reality environment into 100 sectors using Voronoi
tessellation, which categorised each time point/position based on the
closest seed. This resulted in hexagonswith an in-diameter of 20 vm. In
order to reduce computational load, we down-sampled the data from
60 to 5Hz anddefinedevents basedon all timepoints that spanned the
same sector using run length encoding. For eachevent, we calculated a
novelty score, which integrates twomeasures of spatial novelty: (1) the
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number of visits and (2) the elapsed time since the last visit to a par-
ticular sector.

The final vector of novelty scores for each participant was quan-
tified by averaging the two measures after mean-centring and scaling
to one standard deviation across all events and across all runs within
each participant. Only data from the two encoding runs were included
in the fMRI analysis; however, navigational behaviour in the first
retrieval runwere also taken into accountwhen calculating the novelty
score for the second encoding run. In order not to bias our analysis
towards initial encounters with a sector, for which an elapsed time is
not defined, these events were excluded from subsequent neural
analyses.

Within each run, the novelty score was predicted by elapsed time
since the onset of the run. To account for wide tails in the data, a
student distribution was used. The novelty score was scaled to have a
mean of 0 and an SD of 1.

MRI data analysis
The main objective of our functional neuroimaging data analysis was
to investigate the neural response to spatial novelty in the humanbrain
and, in particular, to assess the graded representation of spatial
novelty along thehippocampal long axis and across the corticalmantle
as a potential coding mechanism. For that purpose, our initial analysis
focused on unravelling brain regions with activity profiles that were
reliably sensitive to systematic variations in spatial novelty during the
Object Location Memory task.

To achieve this, we first discretised the spatial novelty score for
each participant separately into six levels (i.e. Level 1 = highly novel,
Level 6 = highly familiar) based on quantiles. Using HCP task fMRI
analysis pipelines and FSL FEAT routines, we then modelled each
novelty level as a separate regressor in a general linear model (GLM).
Events within each novelty level were entered as variable epochs104 and
regressors were convolved with FSL’s double-gamma (phase 0°) HRF
using pre-whitening. Cue and delay periods were modelled as regres-
sors of no interest, while the ITI periods were included as part of the
implicit baseline. The contrast used for task activation analysis was a
parametricmodulation in the form of a linear change in novelty, which
allowed us to identify peak regions of interest that were sensitive to
spatial novelty and familiarity. To estimate group-level effect sizes and
significance, we used Permutation Analysis of Linear Models (PALM)
through sign flipping105. All results were corrected for multiple com-
parisons at the grayordinate level and across contrasts (negative and
positive) via false discovery rate (FDR) at the p < 0.05 level of
significance106.

All surface-based results were displayed on top of the inflated
S1200 group average MSMAll-registered surfaces from the HCP, while
subcortical results were overlaid ontoMNI-152 structural brain images.
Dense cortical results were reported with reference to the HCP multi-
modal parcellation of the brain (HCP-MMP v1.0)107. Results were fur-
ther characterised at the network level using the Yeo-7-network
parcellation47 and the principal functional connectivity manifolds37 for
which the maps were extracted from the BrainStat108 toolbox. Sig-
nificant cortical verticeswereprojectedonto a 2D spacedefined by the
first two principal gradients. The degree of separation was quantified
by predicting whether a vertex showed a novelty or a familiarity effect
based on the position in this alternative 2D space using a support
vector machine with a radial kernel. For this analysis, the vertices were
split into training (75%) and test (25%) sets.

Graded representation analysis. To investigate graded representa-
tions of spatial novelty-to-familiarity along the hippocampal long axis
and across the cortical mantle, we performed an additional GLM ana-
lysis akin to the procedures employed in ref. 36. In thisGLMand similar
to previous work44, each novelty level was contrasted against the
average of all other levels to identify voxels/vertices that selectively

responded to each level of novelty/familiarity. The z-statistic maps of
the group-level results were then used to categorise each subcortical
voxel and cortical vertex for their novelty preference. This was
achieved by assigning a value between 1 (highly novel) and 6 (highly
familiar) based on the strength of responses (i.e. z-statistics) observed
for each level of novelty/familiarity. The minimum z-value was used as
the main definition of the strongest response since our a priori region
of interest, i.e. the hippocampus, largely showednegative responses to
novelty (higher activity for familiar sectors). The minimum z-statistic
was interpreted as the reverse of level preferences i.e. if a vertex
showed the lowest z-statistic for Level 1 (novel) it was considered as
evidence for preference to Level 6 (familiar).

Hippocampal graded representation analysis. For the hippocampal
analysis, we used bilateral hippocampus masks based on the Free-
Surfer subcortical segmentations included in the CIFTI format. Build-
ing upon prior investigations32,36, we first aimed to account for the
curvature of the hippocampus along the y-coordinates of the MNI
space. For that purpose, a normal-based point to plane/curve projec-
tionwasemployed (see Fig. 2b). A function for the average shapeof the
right and the left hippocampus was estimated by regressing the MNI
y-coordinate onto the MNI z-coordinate via a generalised additive
model (GAM) and the shrinkage version of a cubic regression spline (bs
= cs). With this continuous function, we were able to project each
y-value onto the average shape, which involved finding the tangent of
the voxel location and the function. At the extreme ends of the hip-
pocampus, where a tangent was not available, the original function
value was used instead. Finally, the cumulative Euclidean distance was
calculated for each point from anterior-to-posterior, resulting in an
anterior-ness value.

After this projection, we averaged the novelty preference of each
voxel with the same position value. On average, there were 7.6 (SD = 3)
voxels per unique position along the anterior-to-posterior axis. Lastly,
we used this position to predict the average preference value, which
could vary between 1 and 6. To ensure gradients did not simply arise
from data quality differences along the hippocampal long axis, we also
included the temporal signal-to-noise ratio (tSNR) and the global signal
averaged across runs and participants as co-variates in the model. To
test for potential hemispheric differences46, we first added both
hemispheres into a model and included hemisphere as a factor along
with its interaction with position (i.e. preference ~ position * hemi-
sphere + tSNR + GS). In the absence of a significant interaction effect,
we averaged across hemispheres (i.e. preference ~ position + tSNR +
GS). Significance of the hippocampal gradient was assessed by shuf-
fling the novelty preference labels 100,000 times and comparing the
regression coefficients of the simple linear models with the null dis-
tribution that was generated through the shuffling procedure. P values
were calculated by fitting a function to the null distribution via log-
spline density estimation. This technique makes use of the whole null
distribution, and it is particularly useful to estimate the density of
distribution tails, leading to a more robust estimation of the p value.

In order to ensure that the reported results are not due to arte-
facts of averaging at the group-level, we also repeated the graded
representation analysis at the individual level, calculating regression
coefficients for each participant separately and then submitting these
coefficients to Bayesian t-tests against zero. Individual-level tSNR and
global signal measures, averaged across the two runs, were entered as
co-variates. The Bayes factors for two-tailed t-tests were calculated
using the BayesFactor package109 with the standard r-scale prior
of √2/2.

Cortical graded representation analysis. In addition to the hippo-
campal long axis, we aimed to investigate graded representations of
spatial novelty scales across the cortical mantle. For that purpose, we
developed a customdepth-first search algorithm,which is able to travel
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along the cortical surface respecting its folding pattern. The algorithm
started from peak vertices of the Level 6 (highly familiar) clusters
identified in our novelty selectivity analysis, and at each step could only
move to a neighbouring vertex. The same results could be achieved
using peak vertices of the Level 1 (highly novel) clusters. Vertices are
neighbours when they share a face in the 32k Conte69 mesh. To
uncover gradients, the algorithm was only allowed to walk from one
vertex to a neighbouring vertex with either the same level or a level of
N-1. Since Level 5 was mostly absent in our cortical analysis, the algo-
rithm was allowed to skip this level. We used one vertex per Level 6
cluster as a starting point for the algorithm. Potential gradients were
then inspected visually and discarded if they only arose via tangential
connections (e.g. via a single vertex). Similarly, tangentially connected
vertices were manually removed from the remaining gradients.

Functional connectivity analysis. To quantify the correspondence
between hippocampal and cortical gradients, we estimated dense
connectivity matrices (59412 × 1559) between each cortical vertex and
each hippocampal voxel for each participant. The connectivity matri-
ces were estimated using Pearson correlation of the corresponding
BOLD time series based on two runs of resting-state fMRI data obtained
from the same participants (AP/PA). After applying Fisher's z-transfor-
mation, connectivity values were averaged for each novelty level and
hemisphere (left/right hippocampus and left/right posterior medial
cortex). To investigate whether voxels in the hippocampus were more
strongly connected to vertices in the cortex that share the samenovelty
preference level, we used Bayesian hierarchical modelling with full
random effects. This model included a binary variable indicating whe-
ther the two levels were the same or different within a pair. Addition-
ally, we included the novelty preference level in the hippocampus and
in the cortex to capture mean differences between novelty levels (i.e.
connectivity ~ cortex_level + HC_level + is_same_level) with full random
slopes and intercepts for each individual. The Fisher z-transformed
connectivity values were scaled to have a mean of 0 and an SD of 1.
Effects are therefore reported in terms of SDs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in this study cannot bemade publicly available
due to restrictions imposed by institutional ethics approval and the
informed consent obtained from study participants. Individual-
specific brain maps (e.g., fMRI response estimates) are available
under restricted access to qualified researchers, contingent upon
approval of a data use agreement and compliance with institutional
ethics guidelines. Access requests should be submitted to the corre-
sponding author (Prof. Deniz Vatansever, deniz@fudan.edu.cn) and
will be reviewed by the institutional data access committee. Requests
will typically receive a response within 4 weeks. Approved data will be
made available for non-commercial research purposes for a periodof 5
years following approval. All group-level statistical brain maps sup-
porting the findings of this study are publicly available at the BALSA
repository (https://balsa.wustl.edu/study/0w1gk). The data used to
generate the figures in this study are provided in the accompanying
Source Data file. Source data are provided with this paper.

Code availability
All custom code used to reproduce the analyses reported in this study,
including statistical comparisons and the depth-first search algorithm,
is available at (https://github.com/cognizelab/SpaNovVR)110. Detailed
information on data pre-processing procedures can be found in the
QuNex documentation (https://qunex.readthedocs.io/en/latest/wiki/
UsageDocs/RunningPreprocessHCP.html). In addition, a fully

customisable and user-friendly version of the Unity-based virtual rea-
lity task developed for this study is publicly available at (https://github.
com/JAQuent/Object-Location-Memory-Task)111. This task was
designed to be accessible to researchers without programming
experience, and all data analysed in this manuscript were collected
using Version 2.1.1 of this task.
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